
1

6/02/2008 1

Sorting

Chapter 7 in Weiss

6/02/2008 2

Today’s Outline

• Announcements
– HW #6-7

• Assignment due Thurs June 5th.

– Ruth’s Tuesday office hours moved to Thursday
June 5th 3:30-4:30pm

• Sorting

6/02/2008 3

Why Sort?

6/02/2008 4

Sorting: The Big Picture

Problem: Given n comparableelements in an array,
sort them in an increasing (or decreasing) order.

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:

Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Bubble sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

6/02/2008 5

Insertion Sort: Idea

• At the kth step, put the kth input element in
the correct place among the first k elements

• Result: After the kth step,
the first k elements are sorted.

Runtime:
worst case :
best case :
average case :

6/02/2008 6

Selection Sort: Idea

• Find the smallest element, put it 1st

• Find the next smallest element, put it 2nd

• Find the next smallest, put it 3rd

• And so on …

2

6/02/2008 7

Mystery(int array a[]) {

for (int p = 1; p < length; p++) {

int tmp = a[p];

for (int j = p; j > 0 && tmp < a[j-1]; j--)
a[j] = a[j-1];

a[j] = tmp;

}

}

Student Activity

What sort is this?

What is its
running time?
Best?
Avg?
Worst?

6/02/2008 8

Selection Sort: Code
void SelectionSort (Array a[0.. n-1]) {

for (i=0, i< n; ++i) {
j = Find index of smallest entry in a[i.. n-1]
Swap(a[i],a[j])

}

}

Runtime:
worst case :
best case :
average case :

6/02/2008 9

Sorts using other data structures:

Student Activity

How? Runtime?

AVL Sort?

Heap Sort?

Slay Sort?

6/02/2008 10

HeapSort:
Using Priority Queue ADT (heap)

756

27

18
801

35

13

23 44
87

8 13 18 23 27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

6/02/2008 11

AVL Sort

Runtime:

Would the simpler “Splay sort” take any longer than this?

6/02/2008 12

Merge Sort?

3

6/02/2008 13

Merge Sort MergeSort (Array [1.. n])

1. Split Array in half
2. Recursively sort each half
3. Merge two halves together

Merge (a1[1.. n], a2[1.. n])

i1 =1, i2 =1
While (i1 <n, i2 <n) {

if (a1[i1] < a2[i2]) {
Next is a1[i1]
i1 ++

} else {
Next is a2[i2]
i2 ++

}
}
Now throw in the dregs…

“The 2-pointer method”

6/02/2008 14

Merge Sort: Complexity

6/02/2008 15

Quick Sort

28

15 47<<<< <<<<

<<<< <<<<

<<<< <<<<

1. Pick a “pivot”
2. Divide into less-than & greater-than pivot
3. Sort each side recursively

Picture from PhotoDisc.com

6/02/2008 16

The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2
partition S

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted
[Weiss]

6/02/2008 17

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

QuickSort Example

•Choose the pivot as the median of three.

•Place the pivot and the largest at the right
and the smallest at the left

6/02/2008 18

QuickSort Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

•Move i to the right to be larger than pivot.
•Move j to the left to be smaller than pivot.
•Swap

4

6/02/2008 19

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

i j

QuickSort Example

6/02/2008 20

Recursive Quicksort

Quicksort(A[]: integer array, left,right : integer) : {
pivotindex : integer;
if left + CUTOFF ≤ right then

pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
Quicksort(A, left, pivotindex – 1);
Quicksort(A, pivotindex + 1, right);

else
Insertionsort(A,left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

6/02/2008 21

Recurrence Relations

Write the recurrence relation for QuickSort:

• Best Case:

• Worst Case:

Student Activity

6/02/2008 22

QuickSort:
Bestcase complexity

6/02/2008 23

QuickSort:
Worstcase complexity

6/02/2008 24

QuickSort:
Averagecase complexity

Turns out to be O(n log n)

See Section 7.7.5 for an idea of the proof.
Don’t need to know proof details for this course.

5

6/02/2008 25

Features of Sorting Algorithms

• In-place
– Sorted items occupy the same space as the

original items. (No copying required, only O(1)
extra space if any.)

• Stable
– Items in input with the same value end up in the

same order as when they began.

6/02/2008 26

Sort Properties

Are the following: stable? in-place?
Insertion Sort? No Yes No Yes

Selection Sort? No Yes No Yes

Heap Sort? No Yes No Yes

MergeSort? No Yes No Yes

QuickSort? No Yes No Yes

Student Activity

6/02/2008 27

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all run
in O(N log N) bestcase running time

• Can we do any better?

• No, if the basic action is a comparison.

6/02/2008 28

Sorting Model

• Recall our basic assumption: we can only compare
two elements at a time
– we can only reduce the possible solution space by half

each time we make a comparison

• Suppose you are given N elements
– Assume no duplicates

• How many possible orderings can you get?
– Example: a, b, c (N = 3)

6/02/2008 29

Permutations

• How many possible orderings can you get?
– Example: a, b, c (N = 3)

– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)

– 6 orderings = 3•2•1 = 3! (ie, “3 factorial”)

– All the possible permutations of a set of 3 elements

• For N elements
– N choices for the first position, (N-1) choices for the

second position, …, (2) choices, 1 choice

– N(N-1)(N-2)L(2)(1)= N! possible orderings

6/02/2008 30

Decision Tree
a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c

6

6/02/2008 31

Lower bound on Height
• A binary tree of height h has at mosthow manyleaves?

L

• A binary tree with L leaves has height at least:

h

• The decision tree has how many leaves:

• So the decision tree has height:

h

Student Activity

6/02/2008 32

log(N!) is Ω(NlogN)

()

)log(
2

log
2

)2log(log
2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log

)1()2()2()1(log)!log(

NN

N
N

N
N

N

NN

N
NNN

NNN

NNNN

Ω=

−=−≥

≥

++−+−+≥

+++−+−+=
⋅−⋅−⋅=

L

L

L

select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

6/02/2008 33

Ω(N log N)

• Run time of any comparison-based sorting
algorithm is ΩΩΩΩ(N log N)

• Can we do better if we don’t use comparisons?

6/02/2008 34

BucketSort (aka BinSort, CountingSort)
If all values to be sorted are knownto be between 1
andK, create an array count of size K, increment
counts while traversing the input, and finally output
the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

5

4

3

2

1

count array

Running time to sort n items?

6/02/2008 35

BucketSort Complexity: O(n+K)

• Case 1: K is a constant
– BinSort is linear time

• Case 2: K is variable
– Not simply linear time

• Case 3: K is constant but large (e.g. 232)
– ???

6/02/2008 36

Fixing impracticality: RadixSort

• Radix = “The base of a number system”
– We’ll use 10 for convenience, but could be

anything

• Idea: BucketSort on each digit ,
least significant to most significant
(lsd to msd)

7

6/02/2008 37

67
123
38
3

721
9

537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

Radix Sort Example (1st pass)

721
3

123
537

67
478

38
9

After 1st pass

6/02/2008 38

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example (2nd pass)

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass
3
9

721
123
537

38
67

478

6/02/2008 39

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example (3rd pass)

After 2nd pass
3
9

721
123
537

38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

6/02/2008 40

RadixSort
• Input:126, 328, 636, 341, 416, 131, 328

9876543210

BucketSort on lsd:

9876543210

BucketSort on next-higher digit:

9876543210

BucketSort on msd:

Student Activity

6/02/2008 41

Radixsort: Complexity

• How many passes?

• How much work per pass?

• Total time?

• Conclusion?

• In practice
– RadixSort only good for large number of elements with

relatively small values. Why?
– Hard on the cache compared to MergeSort/QuickSort 6/02/2008 42

Internal versus External Sorting

• Need sorting algorithms that minimize disk/tape
access time

• External sorting – Basic Idea:
– Load chunk of data into RAM, sort, store this “run” on

disk/tape

– Use the Merge routine from Mergesort to merge runs

– Repeat until you have only one run (one sorted chunk)

– Text gives some examples in section 7.10

