Graphs

Chapter 9 in Weiss

5/30/2008

Today's Outline

- Announcements
 - HW #6-7
 - Partner Selection due Thurs May 29 (last night)
 - Assignment due Thurs June 5th.
- Graphs
 - Dijkstra's (Solves the SSSP problem)
 - Minimum Spanning Trees (MSTs)

Dijkstra's Correctness: The Cloud Proof

Next shortest path from inside the known cloud Better path to V? *No!* the Known Cloud (W) Source

How does Dijkstra's decide which vertex to add to the Known set next? • If path to V is shortest, path to W must be at least as long

(or else we would have picked W as the next vertex)

So the path through **W** to **V** cannot be any shorter!

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud: Initial cloud is just the source with shortest path 0 Assume: Everything inside the cloud has the correct shortest path

Inductive step: Only when we prove the shortest path to some node v (which is *not* in the cloud) is correct, we add it to the cloud

When does Dijkstra's algorithm not work?

5/30/2008

Dijkstra's vs BFS

At each step:

At each step:

- 1) Pick closest unknown vertex
- 2) Add it to finished vertices
- 3) Update distances

Dijkstra's Algorithm

3) Update queue with neighbors

1) Pick vertex from queue

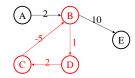
2) Add it to visited vertices

Some Similarities:

5/30/2008

Breadth-first Search

The Trouble with Negative Weight Cycles



What's the shortest path from A to E?

Problem?

Minimum Spanning Trees

Given an undirected graph **G**=(**V**,**E**), find a graph **G'=(V**,**E')** such that:

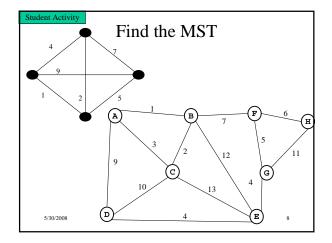
G' is a minimum

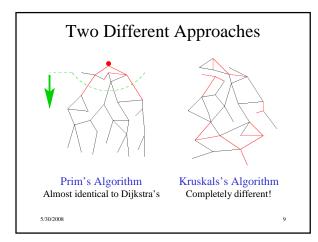
spanning tree.

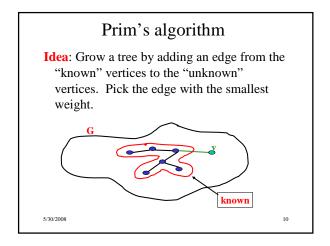
- E' is a subset of E
- -|E'| = |V| 1
- G' is connected
- $-\sum_{(u,v)\in E'} c_{uv}$ is minimal

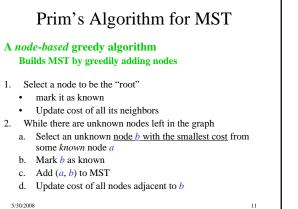
Applications: wiring a house, power grids, Internet connections

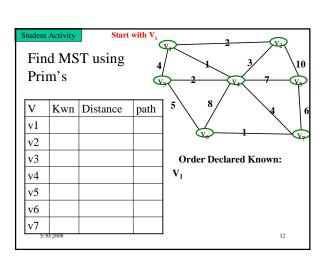
5/30/2008











Prim's Algorithm Analysis

Running time:

Same as Dijkstra's: $O(|E| \log |V|)$

Correctness:

Proof is similar to Dijkstra's

5/30/2008

Kruskal's MST Algorithm Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight. G=(V,E) V 5/30/2008

Kruskal's Algorithm for MST

13

An $\it edge\mbox{-}based$ greedy algorithm

Builds MST by greedily adding edges

- 1. Initialize with
 - · empty MST
 - · all vertices marked unconnected
 - · all edges unmarked
- 2. While there are still unmarked edges
 - a. Pick the lowest cost edge (u,v) and mark it
 - b. If ${\bf u}$ and ${\bf v}$ are not already connected, add $({\bf u},{\bf v})$ to the MST and mark ${\bf u}$ and ${\bf v}$ as connected to each other

Doesn't it sound familiar?

5/30/2008

woid Graph::kruskal(){
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES = 1){
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset){
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
}

}

}

5/30/2008</pre>

Find MST using Kruskal's Find MST using Kruskal's A 2 B 2 B 4 9 10 G Total Cost: Now find the MST using Prim's method. Under what conditions will these methods give the same result?

Kruskal's Algorithm: Correctness It clearly generates a spanning tree. Call it T_K . Suppose T_K is not minimum: Pick another spanning tree T_{min} with lower cost than T_K Pick the smallest edge $e_1 = (u, v)$ in T_K that is not in T_{min} T_{min} already has a path p in T_{min} from u to v \Rightarrow Adding e_1 to T_{min} will create a cycle in T_{min} Pick an edge e_2 in p that Kruskal's algorithm considered after adding e_1 (must exist: u and v unconnected when e_1 considered) \Rightarrow cost(e_2) \geq cost(e_1) \Rightarrow can replace e_2 with e_1 in T_{min} without increasing cost! Keep doing this until T_{min} is identical to T_K \Rightarrow T_K must also be minimal – contradiction!