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Graphs

Chapter 9 in Weiss
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Today’s Outline

• Announcements
– HW #6-7

• Partner Selection due Thurs May 29 (last night)

• Assignment due Thurs June 5th.

• Graphs
– Dijkstra’s (Solves the SSSP problem)

– Minimum Spanning Trees (MSTs)
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The Known 

Cloud

V

Next shortest path from 
inside the known cloud

W

Better path 
to V?  No!

Dijkstra’s Correctness: 
The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to V is shortest, path to Wmust be at least as long

(or else we would have picked Was the next vertex)
• So the path through Wto V cannot be any shorter!

Source
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Correctness: Inside the Cloud
Prove by induction on # of nodes in the cloud:

Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the correct 
shortest path

Inductive step: Only when we prove the shortest 
path to some node v (which is not in the cloud) is 
correct, we add it to the cloud

When does Dijkstra’s algorithm not work?
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Dijkstra’s vs BFS
At each step:

1) Pick closest unknown vertex

2) Add it to finished vertices

3) Update distances

Dijkstra’s Algorithm

At each step:
1) Pick vertex from queue

2) Add it to visited vertices

3) Update queue with neighbors

Breadth-first Search

Some Similarities:
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The Trouble with 
Negative Weight Cycles
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What’s the shortest path from A to E?

Problem?
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Minimum Spanning Trees
Given an undirected graph G=(V,E), find a 

graph G’=(V, E’ ) such that:
– E’ is a subset of E

– |E’ | = |V| - 1

– G’ is connected

– is minimal

Applications: wiring a house, power grids, 
Internet connections
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G’ is a minimum 
spanning tree.
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Find the MST
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Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!
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Prim’s algorithm

Idea: Grow a tree by adding an edge from the 
“known” vertices to the “unknown”
vertices.  Pick the edge with the smallest 
weight.

G

v

known
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Prim’s Algorithm for MST

A node-based greedy algorithm
Builds MST by greedily adding nodes

1. Select a node to be the “root”
• mark it as known
• Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest costfrom 

some knownnode a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

5/30/2008 12

Find MST using 
Prim’s v4
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Student Activity

Order Declared Known:
V1
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Prim’s Algorithm Analysis

Running time: 

Same as Dijkstra’s: O(|E| log |V|)

Correctness: 
Proof is similar to Dijkstra’s
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Kruskal’s MST Algorithm

Idea: Grow a forestout of edges that do not 
create a cycle.  Pick an edge with the 
smallest weight.

G=(V,E)

v
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Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with

• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge(u,v) and mark it

b. If u and v are not already connected, add (u,v) to the 
MST and mark u and v as connected to each other

Doesn’t it sound familiar? 
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Kruskal code
void Graph::kruskal(){

int edgesAccepted = 0;

DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u);

vset = s.find(v);

if (uset != vset){

edgesAccepted++;

s.unionSets(uset, vset);

}

}

}

Student Activity
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Find MST using Kruskal’s
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Student Activity

Total Cost:

• Now find the MST using Prim’s method.
• Under what conditions will these methods give the same result?
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Kruskal’s Algorithm: Correctness
It clearly generates a spanning tree. Call it TK.

Suppose TK is notminimum:

Pick another spanning tree Tmin with lower costthan TK

Pick the smallest edge e1=(u,v) in TK that is not in Tmin

Tmin already has a path p in Tmin from u to v
⇒ Adding e1 to Tmin will create a cycle in Tmin

Pick an edge e2 in p that Kruskal’s algorithm considered after
adding e1 (must exist: u and v unconnected when e1 considered)
⇒ cost(e2) ≥ cost(e1)
⇒ can replace e2 with e1 in Tmin without increasing cost!

Keep doing this until Tmin is identical to TK

⇒ TK must also be minimal – contradiction!


