

Nifty Storage Trick

- Use the same array representation as before
- Instead of storing -1 for the root, simply store-size
[Read section 8.4, page 299]

How about Union-by-height?

- Can still guarantee $\mathrm{O}(\log n)$ worst case depth

Left as an exercise! (see Weiss p. 300)

Problem: Union-by-height doesn't combine very well with the new find optimization technique we'll see next

5/05/2008

Interlude: A Really Slow Function

Ackermann's function is a really big function $\mathrm{A}(x, y)$ with inverse $\alpha(x, y)$ which is really small

How fast does $\alpha(x, y)$ grow?
$\alpha(x, y)=4$ for x far larger than the number of atoms in the universe $\left(2^{300}\right)$
α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences

5/05/2008
42

A More Comprehensible Slow Function

```
    log*}x=\mathrm{ number of times you need to compute
            log to bring value down to at most 1
E.g. 年* 2 = 1
    log* 4 = log* 2
    log}*16=\mp@subsup{log}{*}{*}\mp@subsup{2}{}{22}=3\quad(\operatorname{log}\operatorname{log}\operatorname{log}16=1
    log}*65536= log* 2 2\mp@subsup{2}{}{22}=4 (log log log log 65536=1
    log* 2'65536}=\ldots\ldots\ldots\ldots\ldots..
```

Take this: $\alpha(m, n)$ grows even slower than $\log ^{*} n!!$
5/05/2008

Disjoint Union / Find

 with Weighted Union and PC- Worst case time complexity for a W-Union is $\mathrm{O}(1)$ and for a PC-Find is $\mathrm{O}(\log \mathrm{n})$.
- Time complexity for $m \geq n$ operations on n elements is $\mathrm{O}\left(\mathrm{m} \log ^{*} \mathrm{n}\right)$ where $\log ^{*} \mathrm{n}$ is a very slow growing function.
- $\log * \mathrm{n}<7$ for all reasonable n . Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
- average time per operation is essentially a constant.
- worst case time for a PC-Find is $\mathrm{O}(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.

5/05/2008

