
1

5/05/2008 31

Worst Case for Weighted Union
n/2 Weighted Unions

n/4 Weighted Unions

5/05/2008 32

Example of Worst Case (cont’)
After n/2 + n/4 + …+ 1 Weighted Unions:

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n

5/05/2008 33

Array Implementation

1

2

3

45

6

7
2 41

-1
2

1 -1
1

7 7 5 -1
4

1 2 3 4 5 6 7
up

weight

5/05/2008 34

Weighted Union
W-Union(i,j : index){
//i and j are roots
wi := weight[i];
wj := weight[j];
if wi < wj then
up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi +wj;

}

new runtime for Union():

new runtime for Find():
runtime for m finds and n-1 unions =

5/05/2008 35

Nifty Storage Trick

• Use the same array representation as before

• Instead of storing –1 for the root,
simply store –size

[Read section 8.4, page 299]

5/05/2008 36

How about Union-by-height?

• Can still guarantee O(logn) worst case
depth

Left as an exercise! (see Weiss p. 300)

Problem: Union-by-height doesn’t combine very
well with the new find optimization technique
we’ll see next

2

5/05/2008 37

Path Compression
• On a Find operation point all the nodes on the

search path directly to the root.

1

2

3

45

6

7

PC-Find(3)

8 9

10

5/05/2008 38

Path Compression

• On a Find operation point all the nodes on the
search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

5/05/2008 39

Draw the result of Find(e):

f ha

b

c

d

e

g

i

Student Activity

5/05/2008 40

Self-Adjustment Works

PC-Find(x)

x

5/05/2008 41

Path Compression Find
PC-Find(i : index) {

r := i;
while up[r] ≠ -1 do //find root

r := up[r];

// Assert: r= the root, up[r] = -1
if i ≠ r then // if i was not a root

temp := up[i];

while temp ≠ r do // compress path
up[i] := r;
i := temp;
temp := up[temp]

return(r)
}

(New?) runtime for Find:

5/05/2008 42

Interlude: A Really Slow Function
Ackermann’s function is a reallybig function A(x, y)

with inverse α(x, y) which is reallysmall

How fast does α(x, y) grow?
α(x, y) = 4 for x far larger than the number of atoms
in the universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

3

5/05/2008 43

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g. log* 2 = 1
log* 4 = log* 22 = 2
log* 16 = log* 222 = 3 (log log log 16 = 1)
log* 65536 = log* 2222 = 4 (log log log log 65536 = 1)
log* 265536= …………… = 5

Take this: α(m,n) grows even slower than log* n !!
5/05/2008 44

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and
find operations on a set of n elements have worst case
complexity of O(p ⋅ α(p, n))

For all practical purposes this is amortized constant time:

O(p ⋅ 4) for p operations!

• Very complex analysis – worse than splay tree analysis
etc. that we skipped!

5/05/2008 45

Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union
is O(1) and for a PC-Find is O(log n).

• Time complexity for m ≥ n operations on n
elements is O(m log* n) where log* n is a
very slow growing function.
– Log * n < 7 for all reasonable n. Essentially

constant time per operation!

5/05/2008 46

Amortized Complexity

• For disjoint union / find with weighted
union and path compression.
– average time per operation is essentially a

constant.

– worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but
over time the average cost per operation is
not.

