

Disjoint Set-Definition

- Set
- A collection of distinct objects (unique in that set)
- Sorted? Operations?
- Disjoint sets
- A member of a set is unique among all sets
- Example: $\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name, one of its members
$-\{3, \underline{5}, 7\},\{4,2,8\},\{\underline{9}\},\{\underline{1}, 6\}$
s/0zzou 0 perations?
3

Today's Outline

- Admin:
- HW \#4 due - Thurs 5/03 at 11:59pm
- Print out of code
- Write-up
- Disjoint Sets (Chapter 8)

Union

- Union (x, y) - take the union of two sets named x and y
$-\{3, \underline{5}, 7\},\{4,2,8\},\{\underline{9}\},\{\underline{1}, 6\}$
- Union(5,1)
$\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
Or $\{3,5,7, \underline{1}, 6\},\{4,2, \underline{8}\},\{\underline{9}\}$

5/02/2008
4

Find

- Find(x) - return the name of the set containing x .
$-\{3, \underline{5}, 7,1,6\},\{4,2,8\},\{\underline{9}\}$,
$-\operatorname{Find}(1)=5$
$-\operatorname{Find}(4)=8$

Building Mazes

- Build a random maze by erasing edges.

Building Mazes (2)

- Pick Start and End

5/02/2008

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- Only one path from any one cell to another (There are no cycles - no cell can reach itself by a path unless it retraces some part of the path.)

5/02/2008 9

A Cycle

Start

A Good Solution

A Hidden Tree

Number the Cells

We have disjoint sets $S=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$ each cell is unto itself. We have all possible edges $\mathrm{E}=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ edges total.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36
\quad End					

5/022008 13

Basic Algorithm

- $\mathrm{S}=$ set of sets of connected cells
- $E=$ set of edges
- Maze = set of maze edges (initially empty)

```
While there is more than one set in \(S\) \{
    pick a random edge ( \(\mathrm{x}, \mathrm{y}\) ) and remove from E
    \(\mathrm{u}:=\operatorname{Find}(\mathrm{x})\);
    \(\mathrm{v}:=\operatorname{Find}(\mathrm{y})\);
if \(u \neq v\) then // removing edge ( \(x, y\) ) connects previously non-
                                    // connected cells x and y - leave this edge removed!
    Union(u,v)
else // cells \(x\) and \(y\) were already connected, add this
                                    // edge to set of edges that will make up final maze.
add ( \(x, y\) ) to Maze
\}
All remaining members of \(E\) together with Maze form the maze
```


Example

Start	Pick (19,20)							$\begin{aligned} & \text { S } \\ & \{1,2, \underline{7}, 8,9,13,19 \\ & 14,20,26,27\} \end{aligned}$	
	1								
		2	3	4	5	6		$\{3\}$$\{4\}$	
	7	8	9	10	11	12		\{5]	
	13	14	15	16	17	18		$\{\underline{6}\}$	
								\{10\}	
	19	20	21	22	23	24		$\begin{aligned} & \{11,17\} \\ & \{1, \underline{ } \end{aligned}$	
								$\{12\}$	
	25	26	27	28	29	30		\{15,16, 21$\}$	
	31	32	33	34	35	36	End		
								\{22,23,24,29,39,32	
5/02/2008								33,34,35,36\}	17

Example at the End

S
\{1,2,3,4,5,6,7, ... 36\}
Start

7	2	3	4	5	6
	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Implementing the DS ADT

- n elements,

Total Cost of: m finds, $\leq n-1$ unions more unions?

- Target complexity: $O(m+n)$
i.e. $O(1)$ amortized
- $O(1)$ worst-case for find as well as union would be great, but...
Known result: both find and union cannot 5/2289e done in worst-case $O(1)$ time 19 19

Find Operation

Find(x) - follow x to the root and return the root

5/02/2008
21

Simple Implementation

- Array of indices
(1)
(2)
(3)

23

5/02/2008

Union Operation

$\operatorname{Union}(\mathrm{x}, \mathrm{y})-\operatorname{assuming} \mathrm{x}$ and y are roots, point y to x .

Implementation

void Union (int x, int $y)\{$
$\operatorname{up}[y]=x ;$
\}
$\mathbf{x}=\mathrm{up}[\mathrm{x}]$;
$\mathbf{x}=\mathrm{up}[\mathrm{x}]$;
\}
\}
return x;
return x;
\}
\}

Now this doesn't look good $)^{*}$
Can we do better? Yes!

1. Improve union so that find only takes $\Theta(\log n)$

- Union-by-size
- Reduces complexity to $\Theta(m \log n+n)$

2. Improve find so that it becomes even better!

- Path compression
${ }_{5 / 022008}$ Reduces complexity to almost $\Theta(m+n) \quad{ }^{25}$ \qquad

Weighted Union

- Weighted Union
- Always point the smaller (total \# of nodes) tree to the root of the larger tree

Analysis of Weighted Union

With weighted union an up-tree of height h has weight at least 2^{h}.

- Proof by induction
- Basis: $\mathrm{h}=0$. The up-tree has one node, $2^{0}=1$
- Inductive step: Assume true for all h < h .

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

$$
\begin{aligned}
\mathrm{n} & \geq 2^{\mathrm{h}} \\
\log _{2} \mathrm{n} & \geq \mathrm{h}
\end{aligned}
$$

- Find (x) in tree T takes $O(\log n)$ time.
- Can we do better?

5/02/2008

