

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:

- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

- Leaf or one child case - easy!

04/11/2008

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes
- Average height is $\mathrm{O}(\log n)$
- Worst case height is $\mathrm{O}(n)$
- Simple cases such as insert($1,2,3, \ldots, n)$ lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $\mathrm{O}(\log n)$ - strong enough!
2. is easy to maintain - not too strong! 04/11/2008 40

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: $\operatorname{balance}(x)=\operatorname{height}(x$. left $)-\operatorname{height}(x$. right $)$
AVL property: $\mathbf{- 1} \leq \operatorname{balance}(x) \leq 1$, for every node x

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $\mathrm{O}\left(2^{h}\right)$) nodes
- Easy to maintain
- Using single and double rotations

04/11/2008 43

The AVL Tree Data Structure Structural properties

1. Binary tree property
2. Balance property
balance of every node is between -1 and 1

Result:
Worst case depth is $\mathrm{O}(\log n)$

Ordering property

- Same as for BST

04/11/2008

44

Proving Shallowness Bound

Testing the Balance Property

AVL trees: find, insert

- AVL find:
- same as BST find.
- AVL insert:
- same as BST insert, except may need to "fix" the AVL tree after inserting new value.

Bad Case \#1

Insert(6)
Insert(3)
Insert(1)

Single rotation in general

$\mathbf{X}<\mathbf{b}<\mathbf{Y}<\mathbf{a}<\mathbf{Z}$

AVL tree insert

Let x be the node where an imbalance occurs.

Four cases to consider. The insertion is in the

1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x.

Idea: Cases $1 \& 4$ are solved by a single rotation.
Cases $2 \& 3$ are solved by a double rotation. 04/11/2008

Fix: Apply Single Rotation AVL Property violated at this node (x)

Single Rotation

1. Rotate between x and child 04/11/2008

Bad Case \#2	
Insert(1)	
Insert(6)	
Insert(3)	
anılıans	${ }_{55}$

Imbalance at node X

Single Rotation

1. Rotate between x and child

Double Rotation

1. Rotate between x 's child and grandchild
2. Rotate between x and x 's new child

Insert into an AVL tree: a bec d		

Single and Double Rotations:

Inserting what integer values
would cause the tree to need a:

1. single rotation?
2. double rotation?

. double rotation?
(0) (3)
3. no rotation?

Student Activity

Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:
? case \#1: Perform single rotation and exit

- case \#2: Perform double rotation and exit
- Both rotations keep the subtree height unchanged.

04/11/2008 Hence only one rotation is sufficient! $\quad 63$

04/11/2008
Easy Insert

Insert(3)

Unbalanced?

