
1
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Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?
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Deletion – The Two Child Case
Idea: Replace the deleted node with a value 

guaranteed to be between the two child subtrees!

Options:

• succ from right subtree: findMin(t.right)

• pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

• Leaf or one child case – easy!

04/11/2008 39

Finally…

3092

207

10

7 replaces 5

Original node containing
7 gets deleted
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Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(logn)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Conditionthat
1. ensures depth isO(log n)        – strong enough!

2. is easy to maintain – not too strong!
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Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height
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Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height
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The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property:  –1  ≤≤≤≤ balance(x) ≤≤≤≤ 1,   for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes

• Easy to maintain
– Using single and double rotations
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The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties

1. Binary tree property

2. Balance property:
balance of every node is
between -1 and 1

Result:

Worst case depth is
O(logn)

Ordering property

– Same as for BST 15
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3

1171

84

6

3

1171

84

6

2

5

5
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Proving Shallowness Bound

121062

115

8

14137 9

15

Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = O(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes
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Testing the Balance Property

2092

155

10

30177

NULLs have 
height -1

We need to be able to:

1.

2.

3.
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An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3 10

3

data

height

children
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AVL trees: find, insert

• AVL find : 
– same as BST find.

• AVL insert : 
– same as BST insert, except may need to 

“fix” the AVL tree after inserting new 
value.
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AVL tree insert
Let x be the node where an imbalance occurs.

Four cases to consider.  The insertion is in the
1. left subtree of the left child of x.
2. rightsubtree of the left child of x.
3. left subtree of the right child of x.
4. rightsubtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a doublerotation.
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Bad Case #1

Insert(6)

Insert(3)

Insert(1)
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Fix: Apply Single Rotation

3

1 6
00

1
6

3

1
0

1

2

Single Rotation:   
1. Rotate between x and child

AVL Property violated at this node (x)
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Single rotation in general
a

Z
Y

b

Xh
h

h

h ≥≥≥≥ -1

a

ZY

b

Xh+1 h h

X < b < Y < a < Z

Height of tree before?   Height of tree after?  Effect on Ancestors?
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Single rotation example

21103

205

15

1

2 4

17

21

10

3 20

5

15

1

2

4

17
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Bad Case #2

Insert(1)

Insert(6)

Insert(3)
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Fix: Apply Double Rotation

3

1 6
00

1

3

6

1

0

1

2

6

3

1

0

1

2

AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child
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Double rotation in general
a

Z

b

W

c

X
Yh-1

h

h h -1

a

Z

b

W

c

X
Yh-1 hh h

h ≥≥≥≥ 0

W < b <X < c < Y < a < Z

Height of tree before?   Height of tree after?  Effect on Ancestors?
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Double rotation, step 1

104

178

15

3 6

16

5

106

178

15

4

3

16

5
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Double rotation, step 2

106

178

15

4

3

16

5

10

6 17

8

15

4

3

16

5
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Imbalance at node X

Single Rotation 

1. Rotate between x and child

Double Rotation

1. Rotate between x’s child and grandchild

2. Rotate between x and x’s new child
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Insert into an AVL tree: a b e c d

Student Activity Circle your final answer
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9

5

2

11

7

1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values 
would cause the tree to need a:

Single and Double Rotations:

13

30

Student Activity
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Insertion into AVL tree

1. Find spot for new key

2. Hang new node there with this key

3. Search back up the path for imbalance

4. If there is an imbalance:
case #1: Perform single rotation and exit

case #2: Perform double rotation and exit
Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient! 04/11/2008 64

Easy Insert

2092

155

10

3017

Insert(3)

12
0

0

100

1 2

3

0

Unbalanced?
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Hard Insert (Bad Case #1)

2092

155

10

3017

Insert(33)

3

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?
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Single Rotation

2092

155

10

30173

12

33

1

0

200

2 3

3

10

0

3092

205

10

333

15
1

0

110

2 2

3

00
1712

0
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Hard Insert (Bad Case #2)
Insert(18)

2092

155

10

30173

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?
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Single Rotation (oops!)

2092

155

10

30173

12
1

1

200

2 3

3

00

3092

205

10

3

15
1

1

020

2 3

3

0
1712

0

18
0

18
0
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Double Rotation (Step #1)

2092

155

10

30173

12
1

1

200

2 3

3

00

18
0

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0
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Double Rotation (Step #2)

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

2092

175

10

303

15
1

0

110

2 2

3

00
12

0
18


