

Today's Outline

- Admin:
- HW \#1 due thurs 4/10 at 11:59pm,
- Bring printouts to class Friday 4/11
- Math
- Trees!

Powers of 2

- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
- each "bit" is a 0 or a 1
- an n-bit wide field can represent how many different things?

0000000000101011
04/09/2008 4

Unsigned binary numbers

- For unsigned numbers in a fixed width field
- the minimum value is 0
- the maximum value is $2^{\mathrm{n}}-1$, where n is the number of bits in the field
- The value is $\quad \sum_{i=0}^{i=n-1} a_{i} 2^{i}$
- Each bit position represents a power of 2 with $\quad a_{i}=0$ or $a_{i}=1$
04/09/2008 5

Logs and exponents

- Definition: $\log _{2} x=y$ means $x=2^{y}$
$-8=2^{3}$, so $\log _{2} 8=3$
$-65536=2^{16}$, so $\log _{2} 65536=16$
- Notice that $\log _{2} x$ tells you how many bits are needed to hold x values
-8 bits holds 256 numbers: 0 to $2^{8}-1=0$ to 255
$-\log _{2} 256=8$

04/09/2008
${ }^{6}$

Floor and Ceiling
$\lfloor X\rfloor$ Floor function: the largest integer $\leq x$
$\lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2$
$\lceil X\rceil$ Ceiling function: the smallest integer $\geq X$
$\lceil 2.3\rceil=3 \quad\lceil-2.3\rceil=-2 \quad\lceil 2\rceil=2$

04/09/2008

Properties of logs

- We will assume logs to base 2 unless specified otherwise
- $\log \mathrm{AB}=\log \mathrm{A}+\log \mathrm{B}$
$-A=2^{\log _{2} \mathrm{~A}}$ and $\mathrm{B}=2^{\log _{2} \mathrm{~B}}$
$-\mathrm{AB}=2^{\log _{2} \mathrm{~A}} \cdot 2^{\log _{2} \mathrm{~B}}=2^{\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B}}$
- so $\log _{2} \mathrm{AB}=\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B}$
- [note: $\log \mathrm{AB} \neq \log \mathrm{A} \bullet \log \mathrm{B}]$

04/09/2008 11

Facts about Floor and Ceiling

1. $X-1<\lfloor X\rfloor \leq X$
2. $X \leq\lceil X\rceil<X+1$
3. $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n$ if n is an integer

Other log properties

- $\log \mathrm{A} / \mathrm{B}=\log \mathrm{A}-\log \mathrm{B}$
- $\log \left(\mathrm{A}^{\mathrm{B}}\right)=\mathrm{B} \log \mathrm{A}$
- $\log \log X<\log X<X$ for all $X>0$
- $\log \log \mathrm{X}=\mathrm{Y}$ means $2^{2^{Y}}=\mathrm{X}$
$-\log \mathrm{X}$ grows slower than X
- called a "sub-linear" function

A \log is a \log is a \log

- Any base $\mathrm{x} \log$ is equivalent to base $2 \log$ within a constant factor

$$
\log _{x} B=\log _{x} B
$$

$B=2^{\log _{2} B}$

$\log _{2} x \log _{x} B=\log _{2} B$

$$
\log _{x} B=\frac{\log _{2} B}{\log _{2} x}
$$

Trees
BSTs, and AVL Trees
Chapter 4 in Weiss

More Recursive Tree Calculations:

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:

- Pre-order: Root, left subtree, right subtree

(an expression tree)
- In-order: Left subtree, root, right subturndere

Traversals

```
void traverse(BNode t) {
    if (t != NULL)
        traverse (t.left);
        print t.element;
        traverse (t.right);
    }
}

\section*{Binary Trees}
- Binary tree is
- a root
- left subtree (maybe empty)
- right subtree (maybe empty)

- Representation:


04/09/2008


18


\section*{A Modest Few Uses}
- Student, Customer records
- Networks : Router tables
- Operating systems : Page tables
- Compilers : Symbol tables

Probably the most widely used ADT!


Find in BST, Iterative


\section*{BuildTree for BST}
- Suppose keys \(1,2,3,4,5,6,7,8,9\) are inserted into an initially empty BST.

Runtime depends on the order!
- in given order
- in reverse order
- median first, then left median, right median, etc.


\section*{Non-lazy Deletion}
- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
- node has no children (leaf node)
- node has one child
- node has two children

Non-lazy Deletion - The Leaf Case

Delete(17)



\section*{Deletion - The Two Child Case}

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:
- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred
- Leaf or one child case - easy!

04/09/2008


\section*{Balanced BST}

Observation
- BST: the shallower the better!
- For a BST with \(n\) nodes
- Average height is \(\mathrm{O}(\log n)\)
- Worst case height is \(\mathrm{O}(n)\)
- Simple cases such as insert( \(1,2,3, \ldots, n)\) lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is \(\mathrm{O}(\log n) \quad\) - strong enough!
2. is easy to maintain - not too strong! 04/09/2008 40

\section*{Potential Balance Conditions}
1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

The AVL Balance Condition Left and right subtrees of every node have equal heights differing by at most 1

Define: balance \((x)=\operatorname{height}(x\). left \()-\operatorname{height}(x\). right \()\)
AVL property: \(\mathbf{- 1} \leq \operatorname{balance}(x) \leq 1\), for every node \(x\)
- Ensures small depth
- Will prove this by showing that an AVL tree of height \(h\) must have a lot of (i.e. \(\mathrm{O}\left(2^{h}\right)\) ) nodes
- Easy to maintain
- Using single and double rotations

04/09/2008 43

The AVL Tree Data Structure Structural properties
1. Binary tree property
2. Balance property:
balance of every node is between -1 and 1

Result:
Worst case depth is \(\mathrm{O}(\log n)\)

Ordering property
- Same as for BST

04/09/2008


44


Proving Shallowness Bound


Testing the Balance Property


AVL trees: find, insert
- AVL find:
- same as BST find.
- AVL insert:
- same as BST insert, except may need to "fix" the AVL tree after inserting new value.

\section*{Bad Case \#1}

Insert(6)
Insert(3)
Insert(1)

Single rotation in general

\(\mathbf{X}<\mathbf{b}<\mathbf{Y}<\mathbf{a}<\mathbf{Z}\)


\section*{AVL tree insert}

Let \(x\) be the node where an imbalance occurs.

Four cases to consider. The insertion is in the
1. left subtree of the left child of \(x\).
2. right subtree of the left child of \(x\).
3. left subtree of the right child of \(x\).
4. right subtree of the right child of \(x\).

Idea: Cases \(1 \& 4\) are solved by a single rotation.
Cases \(2 \& 3\) are solved by a double rotation.

Fix: Apply Single Rotation
AVL Property violated at this node (x)


Single Rotation:
1. Rotate between x and child

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Bad Case \#2} \\
\hline Insert(1) & \\
\hline Insert(6) & \\
\hline Insert(3) & \\
\hline ouneravs & \({ }_{55}\) \\
\hline
\end{tabular}



\section*{Imbalance at node X}

Single Rotation
1. Rotate between \(x\) and child

Double Rotation
1. Rotate between \(x\) 's child and grandchild
2. Rotate between \(x\) and \(x\) 's new child
\begin{tabular}{|l|l|}
\hline Insert into an AVL tree: a bec d \\
& \\
\hline Suddent Activity & Circle your final answer \\
\hline
\end{tabular}

\section*{Single and Double Rotations:}

Inserting what integer values
would cause the tree to need a:
1. single rotation?
2. double rotation?

. double rotation?
(0) (3)
3. no rotation?

Student Activity

\section*{Insertion into AVL tree}
1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:
? case \#1: Perform single rotation and exit
- case \#2: Perform double rotation and exit
- Both rotations keep the subtree height unchanged.

04/09/2008 Hence only one rotation is sufficient! \({ }_{63}\)

```

