
1

04/09/2008 1

Trees

CSE 373
Data Structures & Algorithms

Ruth Anderson
Spring 2008

04/09/2008 2

Today’s Outline

• Admin :
– HW #1 due thurs 4/10 at 11:59pm,

– Bring printouts to class Friday 4/11

• Math
• Trees!

04/09/2008 3

Math Fundamentals &
Asymptotic Analysis

04/09/2008 4

Powers of 2

• Many of the numbers we use in Computer
Science are powers of 2

• Binary numbers (base 2) are easily represented in
digital computers
– each "bit" is a 0 or a 1

– an n-bit wide field can represent how many different
things? 0000000000101011

04/09/2008 5

Unsigned binary numbers

• For unsignednumbers in a fixed width field
– the minimum value is 0

– the maximum value is 2n-1, where n is the
number of bits in the field

– The value is

• Each bit position represents a power of 2
with ai = 0 or ai = 1

ini

i ia 2
1

0∑
−=

=

04/09/2008 6

Logs and exponents

• Definition: log2 x = y means x = 2y

– 8 = 23, so log28 = 3

– 65536= 216, so log265536 = 16

• Notice that log2x tells you how many bits are
needed to hold x values
– 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255

– log2256 = 8

2

04/09/2008 7

x, 2x and log2x

x = 0:.1:4
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')

x

y

04/09/2008 8

2x and log2x

x = 0:10
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')

x

y

04/09/2008 9

Floor and Ceiling

 X

 X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

 2232.722.7 =−=−=

 2222.332.3 =−=−=

04/09/2008 10

Facts about Floor and Ceiling

 integer an is n ifnn/2n/23.

1XXX2.

XX1X1.

=+
+<≤

≤<−

04/09/2008 11

Properties of logs

• We will assume logs to base 2 unless
specified otherwise

• log AB = log A + log B
– A=2log

2
A and B=2log

2
B

– AB = 2log
2
A • 2log

2
B = 2log

2
A+log

2
B

– so log2AB = log2A + log2B

– [note: log AB≠≠≠≠ log A•log B]

04/09/2008 12

Other log properties

• log A/B = log A – log B

• log (AB) = B log A

• log log X < log X < X for all X > 0
– log log X = Y means

– log X grows slower than X
• called a “sub-linear” function

X2
Y2 =

3

04/09/2008 13

A log is a log is a log

• Any base x log is equivalent to base 2 log
within a constant factor

xlog
Blog

Blog

BlogBlogxlog

22

2)(2

Bx

BlogBlog

2

2
x

2x2

BlogBlogxlog

BlogBlogxlog

Blog

xx

2x2

2x2

x

=

=
=

=

=

=

xlog

Blog

2

2

2x

2B

=

= substitution x = B
by def. of logs

log Bx

04/09/2008 14

Trees
BSTs, and AVL Trees

Chapter 4 in Weiss

04/09/2008 15

Tree Calculations Example
A

E

B

D F

C

G

IH

KJ L

M

L

N

How high is this tree?

04/09/2008 16

More Recursive Tree Calculations:
Tree Traversals

A traversalis an order for
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right

subtree

• In-order: Left subtree, root, right
subtree

+

*

2 4

5

(an expression tree)

04/09/2008 17

Traversals

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

print t.element;

traverse (t.right);

}

}

04/09/2008 18

Binary Trees
• Binary tree is

– a root
– left subtree(maybe

empty)
– right subtree(maybe

empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

4

04/09/2008 19

Binary Tree: Representation
A

right
pointer

left
pointer A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

04/09/2008 20

Binary Tree: Special Cases

A

B

D E

C

GF

IH

A

B

D E

C

F

A

B

D E

C

GF

Full Tree

Complete Tree Perfect Tree

04/09/2008 21

ADTs Seen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue

04/09/2008 22

The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes
called the “Map ADT”

• rea
Ruth Anderson
OH: M 12:30-1:30
CSE 360

– sang
Tian Sang,
OH: W & TH 4:30-5:30
CSE 220

– ericm6
Eric McCambridge
OH: Th 1:30-2:30
CSE 218

– devynp
Devy Pranowo

OH: W 1:30-2:30
CSE 218

insert(rea, ….)

find(devynp)
• devynp
Devy Pranowo

....

04/09/2008 23

A Modest Few Uses

• Student, Customer records

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!

04/09/2008 24

Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

5

04/09/2008 25

Binary Search Tree Data Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?
04/09/2008 26

Example and Counter-Example

3

1171

84

5

4

181062

115

8

20

21BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

7

15

04/09/2008 27

Find in BST, Recursive
Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}

2092

155

10

307 17

Runtime:

04/09/2008 28

Find in BST, Iterative
Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else

root = root.right;

}

return root;

}

2092

155

10

307 17

Runtime:

04/09/2008 29

Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves – easy!

04/09/2008 30

BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into

an initially empty BST.
Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc.

6

04/09/2008 31

Bonus: FindMin/FindMax

• Find minimum

• Find maximum

2092

155

10

307 17

04/09/2008 32

Deletion in BST

2092

155

10

307 17

Why might deletion be harder than insertion?

04/09/2008 33

Lazy Deletion
Instead of physically deleting
nodes, just mark them as
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

10

307 17

04/09/2008 34

Non-lazy Deletion

• Removing an item disrupts the tree
structure.

• Basic idea: find the node that is to be
removed. Then “fix” the tree so that it is
still a binary search tree.

• Three cases:
– node has no children (leaf node)

– node has one child

– node has two children

04/09/2008 35

Non-lazy Deletion – The Leaf Case

2092

155

10

307 17

Delete(17)

04/09/2008 36

Deletion – The One Child Case

2092

155

10

307

Delete(15)

7

04/09/2008 37

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?

04/09/2008 38

Deletion – The Two Child Case
Idea: Replace the deleted node with a value

guaranteed to be between the two child subtrees!

Options:

• succfrom right subtree: findMin(t.right)

• predfrom left subtree : findMax(t.left)

Now delete the original node containing succor pred

• Leaf or one child case – easy!

04/09/2008 39

Finally…

3092

207

10

7 replaces 5

Original node containing
7 gets deleted

04/09/2008 40

Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(logn)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Conditionthat
1. ensures depth isO(log n) – strong enough!

2. is easy to maintain – not too strong!

04/09/2008 41

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

04/09/2008 42

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

8

04/09/2008 43

The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property: –1 ≤≤≤≤ balance(x) ≤≤≤≤ 1, for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes

• Easy to maintain
– Using single and double rotations

04/09/2008 44

The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties

1. Binary tree property

2. Balance property:
balance of every node is
between -1 and 1

Result:

Worst case depth is
O(logn)

Ordering property

– Same as for BST 15

04/09/2008 45

3

1171

84

6

3

1171

84

6

2

5

5

04/09/2008 46

Proving Shallowness Bound

121062

115

8

14137 9

15

Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = O(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes

04/09/2008 47

Testing the Balance Property

2092

155

10

30177

NULLs have
height -1

We need to be able to:

1.

2.

3.

04/09/2008 48

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3 10

3

data

height

children

9

04/09/2008 49

AVL trees: find, insert

• AVL find :
– same as BST find.

• AVL insert :
– same as BST insert, exceptmay need to

“fix” the AVL tree after inserting new
value.

04/09/2008 50

AVL tree insert
Let x be the node where an imbalance occurs.

Four cases to consider. The insertion is in the
1. left subtree of the left child of x.
2. rightsubtree of the left child of x.
3. left subtree of the right child of x.
4. rightsubtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a doublerotation.

04/09/2008 51

Bad Case #1

Insert(6)

Insert(3)

Insert(1)

04/09/2008 52

Fix: Apply Single Rotation

3

1 6
00

1
6

3

1
0

1

2

Single Rotation:
1. Rotate between x and child

AVL Property violated at this node (x)

04/09/2008 53

Single rotation in general
a

Z
Y

b

Xh
h

h

h ≥≥≥≥ -1

a

ZY

b

Xh+1 h h

X < b < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors?
04/09/2008 54

Single rotation example

21103

205

15

1

2 4

17

21

10

3 20

5

15

1

2

4

17

10

04/09/2008 55

Bad Case #2

Insert(1)

Insert(6)

Insert(3)

04/09/2008 56

Fix: Apply Double Rotation

3

1 6
00

1

3

6

1

0

1

2

6

3

1

0

1

2

AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

04/09/2008 57

Double rotation in general
a

Z

b

W

c

X
Yh-1

h

h h -1

a

Z

b

W

c

X
Yh-1 hh h

h ≥≥≥≥ 0

W < b <X < c < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors?
04/09/2008 58

Double rotation, step 1

104

178

15

3 6

16

5

106

178

15

4

3

16

5

04/09/2008 59

Double rotation, step 2

106

178

15

4

3

16

5

10

6 17

8

15

4

3

16

5

04/09/2008 60

Imbalance at node X

Single Rotation

1. Rotate between x and child

Double Rotation

1. Rotate between x’s child and grandchild

2. Rotate between x and x’s new child

11

04/09/2008 61

Insert into an AVL tree: a b e c d

Student Activity Circle your final answer
04/09/2008 62

9

5

2

11

7

1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values
would cause the tree to need a:

Single and Double Rotations:

13

30

Student Activity

04/09/2008 63

Insertion into AVL tree

1. Find spot for new key

2. Hang new node there with this key

3. Search back up the path for imbalance

4. If there is an imbalance:
case #1: Perform single rotation and exit

case #2: Perform double rotation and exit
Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient! 04/09/2008 64

Easy Insert

2092

155

10

3017

Insert(3)

12
0

0

100

1 2

3

0

Unbalanced?

04/09/2008 65

Hard Insert (Bad Case #1)

2092

155

10

3017

Insert(33)

3

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?

04/09/2008 66

Single Rotation

2092

155

10

30173

12

33

1

0

200

2 3

3

10

0

3092

205

10

333

15
1

0

110

2 2

3

00
1712

0

12

04/09/2008 67

Hard Insert (Bad Case #2)
Insert(18)

2092

155

10

30173

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?

04/09/2008 68

Single Rotation (oops!)

2092

155

10

30173

12
1

1

200

2 3

3

00

3092

205

10

3

15
1

1

020

2 3

3

0
1712

0

18
0

18
0

04/09/2008 69

Double Rotation (Step #1)

2092

155

10

30173

12
1

1

200

2 3

3

00

18
0

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

04/09/2008 70

Double Rotation (Step #2)

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

2092

175

10

303

15
1

0

110

2 2

3

00
12

0
18

