

## Today's Outline

- Admin: Assignment \#1 due next thurs. at 11:59pm
- Asymptotic analysis


## Asymptotic Analysis

Linear Search vs Binary Search

|  | Linear Search | Binary Search |
| :--- | :--- | :--- |
| Best Case |  |  |
| Worst Case |  |  |

So ... which algorithm is better? What tradeoffs can you make?
04/04/08 4


Fast Computer vs. Smart Programmer (round 1)



## Asymptotic Analysis

- Eliminate low order terms
$-4 \mathrm{n}+5 \Rightarrow$
$-0.5 n \log n+2 n+7 \Rightarrow$
$-\mathrm{n}^{3}+2^{\mathrm{n}}+3 \mathrm{n} \Rightarrow$
- Eliminate coefficients
$-4 \mathrm{n} \Rightarrow$
$-0.5 \mathrm{n} \log \mathrm{n} \Rightarrow$
$-\mathrm{n} \log \mathrm{n}^{2}=>$

04/04/08

## Definition of Order Notation

- Upper bound: $T(n)=O(f(n)) \quad$ Big-O

Exist constants $c$ and $n$ ' such that

$$
T(n) \leq c f(n) \quad \text { for all } n \geq n^{\prime}
$$

- Lower bound: $T(n)=\Omega(g(n)) \quad$ Omega

Exist constants $c$ and $n$ ' such that

$$
T(n) \geq c g(n) \text { for all } n \geq n
$$

- Tight bound: $T(n)=\theta(f(n)) \quad$ Theta

When both hold:

$$
T(n)=O(f(n))
$$

$$
T(n)=\Omega(f(n))
$$

## Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $\mathrm{T}(n)=3 n+2 \boldsymbol{\in O}(\boldsymbol{n})$
- Binary search is $\mathrm{T}(n)=4 \log _{2} n+4 \in \mathbf{O}(\log n)$

Remember: the fastest algorithm has the 04/0408 slowest growing function for its runtime

## Order Notation: Intuition



Although not yet apparent, as $n$ gets "sufficiently large", $\mathrm{f}(n)$ will be "greater than or equal to" $\mathrm{g}(n)_{10}$

## Order Notation: Definition

$\mathbf{O}(\mathbf{f}(\boldsymbol{n}))$ : a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff there exist consts $c$ and $n_{0}$ such that:
$\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$
Example: $\mathrm{g}(n)=1000 n$ vs. $\mathrm{f}(n)=n^{2}$
Is $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ ?
Pick: $\mathrm{n} 0=1000, \mathrm{c}=1$

04/04/08 12

## Notation Notes

Note: Sometimes, you'll see the notation:

$$
\mathrm{g}(n)=\mathrm{O}(\mathrm{f}(n))
$$

This is equivalent to:

$$
\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))
$$

However: The notation

$$
\mathrm{O}(\mathrm{f}(n))=\mathrm{g}(n) \quad \text { is meaningless! }
$$

(in other words big-O is not symmetric)
04/04/08

## Big-O: Common Names



## Meet the Family, Formally

- $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff

There exist $c$ and $n_{0}$ such that $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \mathrm{o}(\mathrm{f}(n))$ iff
There exists a $n_{0}$ such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all $c$ and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=0$

- $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$ iff

There exist $c$ and $n_{0}$ such that $\mathrm{g}(n) \geq c \mathrm{f}(n)$ for all $n \geq n_{0}$
$-\mathrm{g}(n) \in \omega(\mathrm{f}(n))$ iff
There exists a $n_{0}$ such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all $c$ and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=\infty$

- $\mathrm{g}(n) \in \theta(\mathrm{f}(n))$ iff
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$
04/0408

Big-Omega et al. Intuitively

| Asymptotic Notation | Mathematics Relation |
| :---: | :---: |
| O | $\leq$ |
| $\Omega$ | $\geq$ |
| $\theta$ | $=$ |
| o | $<$ |
| $\omega$ | $>$ |


| Pros and Cons of Asymptotic |  |
| :---: | :---: |
| Analysis |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



## Algorithm Analysis Examples

- Consider the following program segment:
x:= ;
for $\mathrm{i}=1$ to N do
for $j=1$ to $i$ do
- What is the value of $x$ at the end?

Which Function Grows Faster?
$n^{3}+2 n^{2}$ vs. $100 n^{2}+1000$

Which Function Grows Faster?

$$
n^{3}+2 n^{2} \quad \text { vs. } 100 n^{2}+1000
$$



