
1

Asymptotic Analysis

CSE 373
Data Structures & Algorithms

Ruth Anderson
Spring 2007

04/04/08 2

Today’s Outline

• Admin: Assignment #1 due next thurs. at
11:59pm

• Asymptotic analysis

Asymptotic Analysis

04/04/08 4

Linear Search vs Binary Search

Worst Case

Best Case

Binary SearchLinear Search

So … which algorithm is better?
What tradeoffs can you make?

04/04/08 5

Fast Computer vs. Slow Computer

04/04/08 6

Fast Computer vs. Smart Programmer
(round 1)

2

04/04/08 7

Fast Computer vs. Smart Programmer
(round 2)

04/04/08 8

Asymptotic Analysis
• Asymptotic analysis looks at the orderof the

running time of the algorithm
– A valuable tool when the input gets “large”
– Ignores the effects of different machinesor different

implementationsof the same algorithm

• Intuitively, to find the asymptotic runtime, throw
away the constants and low-order terms
– Linear search is T(n) = 3n + 2 ∈∈∈∈ O(n)
– Binary search is T(n) = 4 log2n + 4 ∈∈∈∈ O(log n)

Remember: the fastest algorithm has the
slowest growing function for its runtime

04/04/08 9

Asymptotic Analysis
• Eliminate low order terms

– 4n + 5 ⇒

– 0.5 n log n + 2n + 7 ⇒

– n3 + 2n + 3n ⇒

• Eliminate coefficients
– 4n ⇒

– 0.5 n log n ⇒

– n log n2 =>

04/04/08 10

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently
large”, f(n) will be “greater than or equal to”g(n)

f(n) = n3 + 2n2

g(n) = 100n2 + 1000

04/04/08 11

Definition of Order Notation
• Upper bound:T(n) = O(f(n)) Big-O

Exist constants c and n’ such that

T(n) ≤ c f(n) for all n ≥ n’

• Lower bound:T(n) = Ω(g(n)) Omega
Exist constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’

• Tight bound: T(n) = θ(f(n)) Theta
When both hold:

T(n) = O(f(n))

T(n) = Ω(f(n))

04/04/08 12

Order Notation: Definition
O(f(n)) : a set or class of functions

g(n) ∈ O(f(n)) iff there exist constsc and n0 such that:

g(n) ≤ c f(n) for all n ≥ n0

Example: g(n) =1000n vs. f(n) = n2

Is g(n) ∈ O(f(n)) ?
Pick: n0 = 1000, c = 1

3

04/04/08 13

Notation Notes
Note: Sometimes, you’ll see the notation:

g(n) = O(f(n)).

This is equivalent to:

g(n) ∈ O(f(n)).

However: The notation

O(f(n)) = g(n) is meaningless!

(in other words big-O is not symmetric)

04/04/08 14

Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19

So f(n) ∈ O(g(n))

04/04/08 15

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n) (logkn, log n2 ∈ O(log n))

– linear: O(n)

– log-linear: O(n log n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

04/04/08 16

Meet the Family
• O(f(n)) is the set of all functions asymptotically

less than or equalto f(n)
– o(f(n)) is the set of all functions asymptotically

strictly less than f(n)

• Ω(f(n)) is the set of all functions asymptotically
greater than or equalto f(n)
– ω(f(n)) is the set of all functions asymptotically

strictly greater than f(n)

• θ(f(n)) is the set of all functions asymptotically
equalto f(n)

04/04/08 17

Meet the Family, Formally

• g(n) ∈ O(f(n)) iff
There exist c and n0 such that g(n) ≤≤≤≤ c f(n) for all n ≥ n0
– g(n) ∈ o(f(n)) iff

There exists a n0 such that g(n) < c f(n) for all c and n ≥ n0

• g(n) ∈ Ω(f(n)) iff
There exist c and n0 such that g(n) ≥≥≥≥ c f(n) for all n ≥ n0
– g(n) ∈ ω(f(n)) iff

There exists a n0 such that g(n) > c f(n) for all c and n ≥ n0

• g(n) ∈ θ(f(n)) iff
g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n))

Equivalent to: limn→∞ g(n)/f(n) = 0

Equivalent to: limn→∞ g(n)/f(n) = ∞

04/04/08 18

Big-Omega et al. Intuitively

>ω
<o

=θ

≥Ω
≤O

Mathematics RelationAsymptotic Notation

4

04/04/08 19

Pros and Cons of Asymptotic
Analysis

04/04/08 20

Types of Analysis

Two orthogonalaxes:

– bound flavor
• upper bound (O, o)

• lower bound (Ω, ω)

• asymptotically tight (θ)

– analysis case
• worst case (adversary)

• average case

• best case

• “amortized”

04/04/08 21

Algorithm Analysis Examples
• Consider the following

program segment:
x:= 0;

for i = 1 to N do

for j = 1 to i do

x := x + 1;

• What is the value of x at
the end?

04/04/08 22

Analyzing the Loop

• Total number of times x is incremented is
executed =

• Congratulations - You’ve just analyzed your first
program!
– Running time of the program is proportional to

N(N+1)/2 for all N
– Big-O ??

∑
=

+==+++
N

1i 2
1)N(N

i...321

04/04/08 23

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

04/04/08 24

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

