Asymptotic Analysis

CSE 373
Data Structures & Algorithms
Ruth Anderson
Spring 2007

Today's Outline

- **Admin**: Assignment #1 due next thurs. at 11:59pm
- · Asymptotic analysis

04/04/08

08 2

Asymptotic Analysis

Asymptotic Analysis

- · Asymptotic analysis looks at the order of the running time of the algorithm
 - A valuable tool when the input gets "large"
 - Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T(n) = 3n + 2 \in O(n)$
 - Binary search is $T(n) = 4 \log_2 n + 4$ ∈ $O(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime

Asymptotic Analysis

- · Eliminate low order terms
 - $-4n+5 \Rightarrow$
 - $-0.5 \text{ n log n} + 2\text{n} + 7 \Rightarrow$
 - $-n^3 + 2^n + 3n \Longrightarrow$
- Eliminate coefficients
 - 4n ⇒
 - $-0.5 \text{ n log n} \Rightarrow$
 - $-\ n\ log\ n^2 =>$

04/04/08

Definition of Order Notation

- Upper bound: T(n) = O(f(n))Big-O Exist constants c and n' such that

 $T(n) \le c f(n)$ for all $n \ge n$

Lower bound: $T(n) = \Omega(g(n))$ Omega

Exist constants c and n' such that

 $T(n) \ge c g(n)$ for all $n \ge n$

Tight bound: $T(n) = \theta(f(n))$ Theta

When both hold:

T(n) = O(f(n))

 $T(n) = \Omega(f(n))$

Order Notation: Definition

O(f(n)): a set or class of functions

 $g(n) \in O(f(n))$ iff there exist consts c and n_0 such that:

 $g(n) \le c f(n)$ for all $n \ge n_0$

Example: $g(n) = 1000n \text{ vs. } f(n) = n^2$

Is $g(n) \in O(f(n))$?

11

Pick: n0 = 1000, c = 1

04/04/08

2

12

Notation Notes

Note: Sometimes, you'll see the notation:

$$g(n) = O(f(n)).$$

This is equivalent to:

 $g(n) \in O(f(n)).$

However: The notation

O(f(n)) = g(n)is meaningless!

13

(in other words big-O is not symmetric)

Big-O: Common Names

- constant: O(1)

- logarithmic: O(log n) $(\log_k n, \log n^2 \in O(\log n))$

- linear: O(n) - log-linear: O(n log n)

- quadratic: $O(n^2)$ - cubic: $O(n^3)$

– polynomial: $O(n^k)$ (k is a constant) - exponential: O(cn) (c is a constant > 1)

15 04/04/08

Meet the Family

- O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - o(f(n)) is the set of all functions asymptotically strictly less than f(n)
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)
 - $-\omega(f(n))$ is the set of all functions asymptotically strictly greater than f(n)
- $\theta(f(n))$ is the set of all functions asymptotically equal to f(n)

04/04/08 16

Meet the Family, Formally

• $g(n) \in O(f(n))$ iff

There exist c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

 $g(n) \in o(f(n))$ iff There exists a n_0 such that g(n) < c f(n) for all c and $n \ge n_0$ Equivalent to: $\lim_{n\to\infty} g(n)/f(n) = 0$

 $g(n) \in \Omega(f(n))$ iff

There exist c and n_0 such that $g(n) \ge c$ f(n) for all $n \ge n_0$

 $g(n) \in \omega(f(n))$ iff

There exists a n_0 such that g(n) > c f(n) for all c and $n \ge n_0$

Equivalent to: $\lim_{n\to\infty} g(n)/f(n) = \infty$

17

 $g(n) \in \Theta(f(n))$ iff

 $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	≤
Ω	≥
θ	=
0	<
ω	>

04/04/08

Pros and Cons of Asymptotic Analysis

04/04/08

Types of Analysis

Two orthogonal axes:

- bound flavor
 - upper bound (O, o)
 - lower bound (Ω, ω)
 - asymptotically tight (θ)

- analysis case

- · worst case (adversary)
- · average case
- best case
- · "amortized"

04/04/08

20

Algorithm Analysis Examples

• Consider the following program segment:

x:= 0; for i = 1 to N do for j = 1 to i do x := x + 1;

• What is the value of x at the end?

04/04/08

21

19

Analyzing the Loop

 Total number of times x is incremented is executed =

$$1+2+3+...=\sum_{i=1}^{N}i=\frac{N(N+1)}{2}$$

- Congratulations You've just analyzed your first program!
 - Running time of the program is proportional to N(N+1)/2 for all N
 - Big-O ??

04/04/08

22

Which Function Grows Faster?

$$n^3 + 2n^2$$
 vs. $100n^2 + 1000$

04/04/08

23

Which Function Grows Faster? $n^3 + 2n^2$ vs. $100n^2 + 1000$