

## Today's Outline

- Admin: Office hours, etc.
- Stacks and Queues
- Asymptotic analysis


## Office Hours, etc.

Ruth Anderson (in CSE 360) M 12:30-1:30, T 1:30-2:30, or by appointment

Tian Sang (in CSE 220) W \& Th 4:30-5:30pm

Devy Pranowo (in CSE 218)
W 1:30-2:30pm
Eric McCambridge (in CSE 218) Th 1:30-2:30

04/02/08

1. Implement stack ADT two different ways
2. Use to reverse a sound file

Due: Thurs, April 10, 2008
Electronic: at 11:59pm
Hardcopy: in lecture at 11:30am on Friday April 11.

Stacks \& Queues

## First Example: Queue ADT

- Queue operations
create
destroy
enqueue
dequeue
is_empty


4/02/08
6

| enqueue (Object $x$ ) $\mathfrak{i}$ | How test for empty list? |
| :---: | :---: |
| ```Q[back] = x ; back = (back + 1) % size }``` | How to find K-th element in the queue? |
| ```dequeue() { x = Q[front] ; front = (front + 1) % size; return x ; } 04/02/08``` | What is complexity of these operations? <br> Limitations of this structure? |

Circular Array vs. Linked List

04/02/08 9

## Stacks in Practice

- Function call stack
- Removing recursion
- Balancing symbols (parentheses)
- Evaluating Reverse Polish Notation


## Second Example: Stack ADT

- Stack operations
- create
- destroy
- push
- pop
- top
- is_empty


04/02/08
10
$\qquad$


| Comparing Two Algorithms |  |
| :---: | :---: |
|  |  |
|  |  |


| What we want <br> - Rough Estimate <br> - Ignores Details |  |
| :---: | :---: |

## Big-O Analysis

- Ignores "details"


## Asymptotic Analysis

- Complexity as a function of input size $n$
$\mathrm{T}(n)=4 n+5$
$\mathrm{T}(n)=0.5 n \log n-2 n+7$
$\mathrm{T}(n)=2^{n}+n^{3}+3 n$
- What happens as $n$ grows?


## Analysis of Algorithms

- Efficiency measure
- how long the program runs time complexity
- how much memory it uses space complexity
- For today, we'll focus on time complexity only
- Why analyze at all?

04/02/08

## Why Asymptotic Analysis?

- Most algorithms are fast for small $n$
- Time difference too small to be noticeable
- External things dominate (OS, disk I/O, ...)
- BUT $n$ is often large in practice
- Databases, internet, graphics, ...
- Time difference really shows up as $n$ grows!


## Big-O: Common Names

04/0208

| - constant: | $\mathrm{O}(1)$ |  |
| :--- | :--- | :--- |
| - logarithmic: | $\mathrm{O}(\log \mathrm{n})$ |  |
| - linear: | $\mathrm{O}(\mathrm{n})$ |  |
| - quadratic: | $\mathrm{O}\left(\mathrm{n}^{2}\right)$ |  |
| - cubic: | $\mathrm{O}\left(\mathrm{n}^{3}\right)$ |  |
| - polynomial: | $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ | (k is a constant) |
| - exponential: | $\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$ | $(\mathrm{c}$ is a constant $>1)$ |

## Analyzing Code

Basic Java operations Constant time
Consecutive statements Sum of times
Conditionals Larger branch plus test
Loops Sum of iterations
Function calls Cost of function body
Recursive functions Solve recurrence relation

Analyze your code!

04/02/08
21

## Binary Search Analysis

bool BinArrayFind( int array[], int low, int high, int key ) \{

> // The subarray is empty
if( low > high ) return false;
// Search this subarray recursively
int mid = (high + low) / 2;
if( key == array[mid] ) \{ return true;
\} else if ( key < array[mid] ) \{ return BinArrayFind( array, low,

Best case:

Worst case:
return BinArrayFind( array, low,
$\qquad$
\} else \{
return BinArrayFind( array, mid+1,
04/02/08 high, key );
23

## Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

04/0208 24

