
1

Stacks & Queues
and

Asymptotic Analysis

CSE 373
Data Structures & Algorithms

Ruth Anderson
Spring 2008

04/02/08 2

Today’s Outline

• Admin: Office hours, etc.

• Stacks and Queues

• Asymptotic analysis

04/02/08 3

Office Hours, etc.

Ruth Anderson (in CSE 360)
M 12:30-1:30, T 1:30-2:30, or by appointment

Tian Sang (in CSE 220)
W & Th 4:30-5:30pm

Devy Pranowo (in CSE 218)
W 1:30-2:30pm

Eric McCambridge (in CSE 218)
Th 1:30-2:30

04/02/08 4

Project 1 – Sound Blaster!
Play your favorite song in reverse!

Aim:

1. Implement stack ADT two different ways

2. Use to reverse a sound file

Due: Thurs, April 10, 2008

Electronic: at 11:59pm

Hardcopy: in lecture at 11:30am on Friday April 11.

Stacks & Queues

04/02/08 6

• Queue operations
create
destroy
enqueue
dequeue
is_empty

First Example: Queue ADT

F E D C Benqueue dequeueG A

2

04/02/08 7

Circular Array Queue Data Structure

enqueue(Object x) {

Q[back] = x ;

back = (back + 1) % size

}

b c d e f

Q
0 size - 1

front back

dequeue() {

x = Q[front] ;

front = (front + 1) % size;

return x ;

}

How test for empty list?

How to find K-th
element in the queue?

What is complexity of
these operations?

Limitations of this
structure?

04/02/08 8

Linked List Queue Data Structure
b c d e f

front back

void enqueue(Object x) {

if (is_empty())

front = back = new Node(x)

else

back->next = new Node(x)

back = back->next

}

bool is_empty() {

return front == null

}

Object dequeue() {

assert(!is_empty)

return_data = front->data

temp = front

front = front->next

delete temp

return return_data

}

04/02/08 9

Circular Array vs. Linked List

04/02/08 10

Second Example: Stack ADT
• Stack operations

– create
– destroy
– push
– pop
– top
– is_empty

A

B
C
D
E
F

E D C B A

F

04/02/08 11

Stacks in Practice
• Function call stack

• Removing recursion

• Balancing symbols (parentheses)

• Evaluating Reverse Polish Notation
Asymptotic Analysis

3

04/02/08 13

Comparing Two Algorithms

04/02/08 14

What we want
• Rough Estimate

• Ignores Details

04/02/08 15

Big-O Analysis
• Ignores “details”

04/02/08 16

Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity

– how much memory it uses space complexity
• For today, we’ll focus on time complexity only

• Why analyze at all?

04/02/08 17

Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5

T(n) = 0.5 n log n - 2n + 7

T(n) = 2n + n3 + 3n

• What happens as n grows?

04/02/08 18

Why Asymptotic Analysis?
• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n grows!

4

04/02/08 19

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n)

– linear: O(n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

04/02/08 20

Exercise

bool ArrayFind(int array[], int n, int key){

// Insert your algorithm here

}

2 3 5 16 37 50 73 75 126

What algorithm would you choose
to implement this code snippet?

04/02/08 21

Analyzing Code

Basic Java operations
Consecutive statements

Conditionals

Loops
Function calls

Recursive functions

Constant time

Sum of times

Larger branch plus test

Sum of iterations

Cost of function body

Solve recurrence relation

Analyze your code!

04/02/08 22

Linear Search Analysis
bool LinearArrayFind(int array[],

int n,

int key) {

for(int i = 0; i < n; i++) {
if(array[i] == key)

// Found it!

return true;

}

return false;

}

Best Case:

Worst Case:

04/02/08 23

Binary Search Analysis

bool BinArrayFind(int array[], int low,
int high, int key) {

// The subarray is empty
if(low > high) return false;

// Search this subarray recursively
int mid = (high + low) / 2;

if(key == array[mid]) {
return true;

} else if(key < array[mid]) {

return BinArrayFind(array, low,
mid-1, key);

} else {

return BinArrayFind(array, mid+1,

high, key);
}

Best case:

Worst case:

04/02/08 24

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

