

Self-starting counters

- Invalid states should always transition to valid states
 - Assures startup
 - Assures bit-error tolerance
- Design your counters to be self-starting
 - Draw all states in the state diagram

 - Fill in the entire state-transition table
 May limit your ability to exploit don't cares
 ⇒ Choose startup transitions that minimize the logic

CSE370, Lecture 18

Finite state machines: more than counters

- FSM: A system that visits a finite number of logically distinct states
- Counters are simple FSMs
 - Outputs and states are identical
 - Visit states in a fixed sequence without inputs
- FSMs are typically more complex than counters
 - Outputs can depend on current state and on inputs
 - State sequencing depends on current state and on inputs

CSE370, Lecture 18

FSM design

- Counter design procedureState diagram

 - State-transition table
 - 3. Next-state logic minimization
 - 4. Implement the design
- FSM design procedure

 - State diagram
 State-transition table

 - 5. Next-state logic minimization
 - 6. Implement the design

CSE370, Lecture 18

Example: A vending machine

- 15 cents for a cup of coffee (yeah, it's subsidized)
- Doesn't take pennies or quarters
- Doesn't provide any change

 - FSM-design procedure
 - State diagram
 - State-transition table
 - 3. State minimization
 - 4. State encoding5. Next-state logic minimization
 - 6. Implement the design

CSE370, Lecture 18 10

Vending Machine FSM

Clock

Release Mechanism

A vending machine: (conceptual) state diagram Draw self-loops for N' D' for S0 to S3 Also draw self-loops for 1 for S4 to S8 CSE370, Lecture 18 11

