Lecture 4 The “WHY” slide

O Logistics 0 Logic Gates and Truth Tables
= HW1 due Wednesday at start of class = Now you know 0’s and 1's and the basic Boolean algebra, now you
= Office Hours: are ready to go back and forth between truth table, Boolean
< Me: 12:20-1:00 CSE 668 plus one later this week expression, and logic gates. This ability to go back and forth is an

< TAs: Today at 3:30, tomorrow at 12:30 & 2:30 in CSE 220

. extremely useful skill designing and optimizing computer hardware.
= Lab2 going on this week

0 Implementing Logic Functions

O Last lecture --- Boolean algebra = Now with these basic tools you learned, you can “implement” logic
= Axioms functions. We use Boolean algebra to implement logic functions that
= Useful laws and theorems are used in the computers. And these logic functions are used by
= Simplifying Boolean expressions computer programs you write.

0 Today’s lecture 0 Canonical forms
= Logic gates and truth tables in detail = There are many forms to expression one Boolean function. It is
= Implementing logic functions good to have one standard way. A canonical form is the standard
= Canonical forms form for Boolean expressions. It has a nice property that allows you

to go back and forth between truth table/expressions/gates easily.

CSE370, Lecture 4 1 CSE370, Lecture 4

Logic gates and truth tables Logic gates and truth tables (con't)

x R v x s

OAND XeY XY Y:D—z oo ONAND XeY XY Y:Dz N

1 0]0 1 0|1
1 101 1 110
X Y1z
X Y|z 0 NOR X+Y X LI I
0OR  X+Y X z 0 0|0 Y z 0 1]o
Y 0 11 1oofo
101 1 110
1 111 e X Ylz
_ 0D XOR  XOY :;)Uz o oo
INOT X X e ey ST 1 1o
L 110 1 110
X Y1z
B XLy 0XNOR  XOY ij}z o o1
0 Buffer X x Y 00 A/ 1 0lo
1~
e 1l1 1 1)1
CSE370, Lecture 4 3 CSE370, Lecture 4 4
Boolean expressions > logic gates Truth tables ) logic gates
O Example: F = (AeB)’ + CeD 0 Given a truth table

= Write the Boolean expression

A = Minimize the Boolean expression
:DT = Draw as gates
B
D . = Example:
e

B F = A'BC'+A’BC+AB'C+ABC

= A'B(C'+C)+AC(B'+B)
= AB+AC

HHRRBROOOOD
HOKOKORKOIN
HOHOHHOOl'ﬂ

0
1
1
0
0
1
1
4

CSE370, Lecture 4 5 CSE370, Lecture




Example: A binary full adder

O 1-bit binary adder
= Inputs: A, B, Carry-in
= Outputs: Sum, Carry-out

A —

B —

Cin —

Adder

— Sum
— Cout

Full adder: Sum

Before Boolean minimization
Sum = A'B'Cin + A'BCin’

After Boolean minimization
Sum = (ACB) O Cin

A B Cin| Cout Sum
0 0 O 0 0
00 1 |0 1
3 i ? ‘; é Sum = AB'Cin + ABCin' + AB'Cin’ + ABCin
1 00 |o 1 Cout = A'BCin + AB'Cin + ABCin' + ABCin
1 0 1 1 0
11 0 1 0 Both Sum and Cout can be minimized.
11 1 1 1

CSE370, Lecture 4 7

+ AB'Cin' + ABCin

CSE370, Lecture 4 8

Full adder: Carry-out

Before Boolean minimization
Cout = A'BCin + AB'Cin
+ ABCin' + ABCin

After Boolean minimization
Cout = BCin + ACin + AB

CSE370, Lecture 4 9

Preview: A 2-bit ripple-carry adder

A, B A, B
|
0—1Ciy Cou
L
Cou !
Sum,
CSE370, Lecture 4 10

Many possible mappings

0 Many ways to map expressions to gates
« Example: Z=A*B*(C+D)=A* B*(C+D)

/ \

A
B A B
C C
D D
CSE370, Lecture 4 11

What is the optimal gate realization?

O We use the axioms and theorems of Boolean algebra
to “optimize” our designs

0 Design goals vary
= Reduce the number of gates?
= Reduce the number of gate inputs?
= Reduce number of chips and/or wire?

0 How do we explore the tradeoffs?
= Logic minimization: Reduce number of gates and complexity
= Logic optimization: Maximize speed and/or minimize power
= CAD tools

CSE370, Lecture 4 12




Minimal set

0 We can implement any logic function from NOT, NOR,
and NAND
= Example: (X and Y) = not (X nand Y)

0 In fact, we can do it with only NOR or only NAND
= NOT is just NAND or NOR with two identical inputs

X Y | Xnory X Y |XnandY
0 0 1 0 0 1
11 0 11 0

= NAND and NOR are duals: Can implement one from the other
2 X nand Y = not ((not X) nor (not Y))
< X nor Y = not ((not X) nand (not Y))

CSE370, Lecture 4 13

Canonical forms

0 Canonical forms
= Standard forms for Boolean expressions
= Generally not the simplest forms
% Can be minimized
= Derived from truth table

O Two canonical forms
= Sum-of-products (minterms)
= Product-of-sum (maxterms)

CSE370, Lecture 4 14

Sum-of-products canonical form (SOP)

0 Also called disjunctive normal form (DNF)
= Commonly called a minterm expansion

minterm

001 011 101 110 111
' F=AB'C + ABC + AB'C + ABC' + ABC

A B CIF F

0 0 0 (0 1

0 0 1|1

0 1 o0 1

o1 11—

1 0 00 1

1 0 1]1—6

1 1 0[1—6

11 1 (1—%6

F' = AB'C' + ABC' + AB'C'
CSE370, Lecture 4 15

Minterms

0 Variables appear exactly once in each minterm
= In true or inverted form (but not both)

F in canonical form:

Product-of-sums canonical form (POS)

O Also called conjunctive normal form (CNF)
= Commonly called a maxterm expansion

Maxterm (a.k.a. clause)

000 010 100

A B cle F F=(A+B+C)(A+B +C) (A +B+C)
R [ e —

00 1|1 0

0 1 00—t

001 1)1 0

1 0 00—

1 0 11 0

11 01 0

11 11 0

F' = (A+B+C')(A+B'+C')(A'+B+C')(A'+B+C)(A'+B'+C’)

CSE370, Lecture 4 17

A B C | minterms
0 0 0[ABC m0 F(A,B,C) = Zm(1,3,5,6,7)
0 0 1|ABC ml = ml+ m3+m5+mé+m7
0 1 0 |[ABC m2 = A'B'C+A'BC+AB'C+ABC'+ABC
0 1 1|ABC m3
% 8 (1) ﬁgg mg canonical form - minimal form
1 1 0/|ABC mé F(A,B,C) = A'B'C+A'BC+AB'C+ABC+ABC'
1 1 1|ABC m7
=AB+C

short-hand notation
CSE370, Lecture 4 16
Maxterms

0 Variables appears exactly once in each maxterm
= In true or inverted form (but not both)

A B C | maxterms F in canonical form:
0 0 O [A+B+C MO F(A,B,C) = MM(0,2,4)
0 0 1|A+B+C' M1 -
0 1 0|A+B+C M2 = MOeM2eMd
0 1 1|A+B+C M3 = (A+B+C)(A+B'+C)(A'+B+C)
1 0 0 [A+B+C M4
1 0 1/|A+B+C M5 canonical form - minimal form
1 1 0 [A+B+C M6 F(A,B,C) = (A+B+C)(A+B'+C)(A'+B+C)
1 1 1 [A+B+C M7
=AB+C
short-hand notation
CSE370, Lecture 4 18




kS

B
C

Canonical implementations of F = AB + C

T+ These are not reduced forms for F
T
> F= AB'C+ABC+ABC+ABC+ABC
/:anorical sum-of-products
F = (A+B+C)A+B+CYA+B+C)
__1‘_ . /canom:al product-of-sums
CSE370, Lecture 4 19

Conversion between canonical forms

0 Minterm to maxterm
= Use maxterms that aren't in minterm expansion
= F(AB,C) = Xm(1,3,5,6,7) = [1M(0,2,4)
O Maxterm to minterm
= Use minterms that aren’t in maxterm expansion
= F(AB,C) = [TM(0,2,4) = ¥m(1,3,5,6,7)
O Minterm of F to minterm of F'
= Use minterms that don't appear
= F(AB,C) = £m(1,3,56,7) F'(AB,C) = Xm(0,2,4)
O Maxterm of F to maxterm of F'

= Use maxterms that don't appear
= F(AB,C) = [1M(0,2,4) F'(A,B,C) = [1M(1,3,5,6,7)

CSE370, Lecture 4 20

SOP, POS, and de Morgan's theorem

0 Sum-of-products
= F'=AB'C' + A'BC' + AB'C

O Apply de Morgan's to get POS
= (F)' = (AB'C' + ABC' + AB'C)'
s F = (A+B+C)(A+B'+C)(A'+B+C)

O Product-of-sums
s F'= (A+B+C)(A+B'+C)(A'+B+C)(A'+B'+C)(A'+B'+C')

O Apply de Morgan's to get SOP
« (F)' = ((A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C)(A'+B'+C"))"
« F=AB'C + A'BC + AB'C + ABC' + ABC

CSE370, Lecture 4 21




