Lecture 18

¢ Logistics

= HWS5 due today (with extra 10%)

HWS5 due Friday (20% off on Mon 10:29am, Sol'n posted 10:30am)
HW6 out, due Wednesday

Office hours canceled on Friday (am out of town)

Brian will cover lecture on Friday

Midterm 2 covers materials up to Monday lecture & HW6

¢ Last lecture
m Registers/counters
= Design counters

¢ Today
= More counter designs
= Finite state machine design

CSE370, Lecture 18 1

The “WHY” slide

& Finite State Machine (FSM)
= This is what we have been waiting for in this class. Using
combinational and sequential logics, now you can design a lot
of clever digital logic circuits for functional products. We wiill
learn different steps you take to go from word problems to
logic circuits. We first talk about a simplified version of FSM
which is a counter.

CSE370, Lecture 18 2

Another 3-bit up counter: with T flip flops

1. Draw a state diagram
2. Draw a state-transition table

3. Encode the next-state functions
= Minimize the logic using k-maps

4. Implement the design

CSE370, Lecture 18

1. Draw a state diagram

@ 3-bit up-counter @
111 @ 101

(N

CSE370, Lecture 18

2. Draw a state-transition table

Like a truth-table
= State encoding is easy for counters — Use count value

current state next state
0 | 000 001 [1
1 | oo1 010 |2
2 | o010 011 |3
3 | o011 100 | 4
4 | 100 101 |5
5 | 101 110 |6
6 | 110 11 |7
7 | ma 000 |0
CSE370, Lecture 18
3. Encode the next state functions
T flip-flops T1:= T c3
T2 =
—T Q_ =
A T3 o1
—
C3 C2 C1|N3 N2 N1| T3|T2|T1 T2 C3
0 0 0 |0 0 1
0 0 1 |0 1 0
0 1 0]0o 1 1 c1
0 1 1 (1 0 o0 —r
1 0 0 |1 0 1
1 0 11 1 0 3 c3
1 1 0 |1 1 1
1 1 1|0 0 O c1

CSE370, Lecture 18 C2

4. Implement the design

CSE370, Lecture 18

One more counter example:
-Ao:-state counter with D flip flops

4 Counter repeats 5 states in sequence
= Sequence is 000, 010, 011, 101, 110, 000

Step 1: State diagram Step 2: State transition table
Assume D flip-flops

Present State Next State
C+ B+ A+

kPP ooooln
PR OOR R OO|lm
RrOoORrOPROR O

CSE370, Lecture 18

5-state counter (con’t)

Step 3: Encode the next state functions

C_+ C B_+ o A—+ C
A AI A
B B B
C+= B+ = A+ =
CSE370, Lecture 18 9

5-state counter (con't)

Step 4: Implement the design

CSE370, Lecture 18 10

5-state counter (con’t)

4 Is our design robust?
= What if the counter starts in a 111 state?

Does our counter get
stuck in invalid states???

Go)—(

(09
C @)

019 10)
01

CSE370, Lecture 18 11

5-state counter (con't)

4 Back-annotate our design to check it

Fill in state transition table Draw state diagram

Present State Next State

C B A|C+ B+ A+ @ @
0 0 0|0 1 0O
0 0 1
0 1 0|0 1 1 @ @
01 1|1 0 1
1 0 0
1 0 1]l1 1 o0 @
1 1 0flo o o
A+=BC 1 1 1
B+=B' +AC'
C+=A

CSE370, Lecture 18 12

Self-starting counters

& Invalid states should always transition to valid states
= Assures startup
m Assures bit-error tolerance

4 Design your counters to be self-starting
= Draw all states in the state diagram
= Fill in the entire state-transition table
= May limit your ability to exploit don't cares
¥ Choose startup transitions that minimize the logic

CSE370, Lecture 18 13

Finite state machines: more than counters

¢ FSM: A system that visits a finite number of logically
distinct states

4 Counters are simple FSMs
= Outputs and states are identical
= Visit states in a fixed sequence without inputs

& FSMs are typically more complex than counters
= Outputs can depend on current state and on inputs
m State sequencing depends on current state and on inputs

CSE370, Lecture 18 14

FSM design

= Counter-design procedure
1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

= FSM-design procedure

1. State diagram
state-transition table
State minimization
State encoding
Next-state logic minimization
Implement the design

ogkwd

CSE370, Lecture 18

15

Example: A vending machine

4 15 cents for a cup of coffee

4 Doesn’t take pennies or quarters Reset
¢ Doesn’t provide any change J
N :
. Vending
Coin Machine
Sensor D FSM

Open

Release

m FSM-design procedure =~ ———
1. State diagram

state-transition table

State minimization

State encoding

Next-state logic minimization

Implement the design

Clock

ok wWN

CSE370, Lecture 18

Mechanism

16

A vending machine: state diagram

CSE370, Lecture 18

17

A vending machine: State transition table

CSE370, Lecture 18

18

A vending machine: State minimization

CSE370, Lecture 18

19

A vending machine: State encoding

CSE370, Lecture 18

20

A vending machine: Logic minimization

CSE370, Lecture 18

21

A vending machine: Implementation

CSE370, Lecture 18

22

