Overview

¢ Last lecture
= Sequential Logic Examples

¢ Today
= State encoding
¥ One-hot encoding
& Output encoding
¥ FSM partitioning

CSE370, Lecture 24 1

State encoding

¢ Assume n state bits and m states
m 2" /(2" — m)! possible encodings [m > n > log,(m)]
¥ From binomial expansion
¥ Example: 3 state bits, 4 states, 1680 possible state assignments

¢ Hard problem, with no known algorithmic solution
= Can try heuristic approaches

= Can try to optimize some metric
¥ FSM size (amount of logic and number of FFs)
¥ FSM speed (depth of logic and fanout)
¥ FSM dependencies (decomposition)

& Need to consider startup
m Self-starting FSM or explicit reset input

CSE370, Lecture 24 2

State-encoding strategies

¢ No guarantee of optimality
= An intractable problem

4 Most common strategies
= Binary (sequential) — number states as in the state table
= Random — computer tries random encodings
= Heuristic — rules of thumb that seem to work well
K e.g. Gray-code — try to give adjacent states (states with an arc
between them) codes that differ in only one bit position
= One-hot — use as many state bits as there are states

= Output — use outputs to help encode states

CSE370, Lecture 24 3

One-hot encoding

¢ One-hot: Encode n states using n flip-flops
= Assign a single 1" for each state
¥ Example: 0001, 0010, 0100, 1000
= Propagate a single “1” from one flip-flop to the next
& All other flip-flop outputs are “0”

¢ The inverse: One-cold encoding
= Assign a single 0" for each state
¥ Example: 1110, 1101, 1011, 0111
= Propagate a single “"0” from one flip-flop to the next
& All other flip-flop outputs are “1”

¢ "almost one-hot” encoding
= Use no-hot (000...0) for the initial (reset state)

= Assumes you never revisit the reset state

CSE370, Lecture 24 4

One-hot encoding (con't)

¢ Often the best approach for FPGAs
= FPGAs have many flip-flops
= One-hot machines use the least next-state logic

¢ Draw FSM directly from the state diagram
= One product term per incoming arc
= But complex state diagram = complex design

¢ One-hot designs have many possible failure modes
= All states that aren’t one-hot
= Can create logic to reset the FSM if it enters illegal state

¢ Large machines require many flip-flops
= Decompose design into smaller one-hot encoded sub-designs
¥ n+m states for two machines versus n*m states for one

CSE370, Lecture 24 5

Vending machine again...

¢ Release item after receiving 15 cents
= Single coin slot for dimes and nickels
K Sensor specifies coin type
= Machine does not give change

Reset

|

N
» Vendin
Coin Machine |_Open Release
Sensor D FSM Mechanism

Clock

CSE370, Lecture 24

One-hot encoded transition table

present state inputs|next state output
T Do
01|l0010 0 D; = QN+ Q,D'N'
10/0100 0 D, = QD + QN +
SR Bl D; = QD + QD + QN + Qs
0010 00[0010 0 OPEN = O
010100 0 3
10/1000 0
11 ---- =
0100 0O0|O0O1O00O0 0
011000 0
10/1000 0
11]--- - =
1000 —--[1000 1

CSE370, Lecture 24 7

One-hot encoded vending machine

| -
L)

1

D, = Q,D'N’
| D, = Q,N + Q,D'N’
D, = Q,D + Q,N +

D; = QD + Q,D + Q;N + Q3
OPEN = Q,

Hg g

[-] [-])
[] L] Lb]

Ly

1

[=]
[I e I B I

I
==
=

Reask’

CSE370, Lecture 24 8

Designing from the state diagram

D, = Q,D'N’
D, = QN + Q,D'N'
D, =QyD + Q;N +

D3 =QD+QD+QN+Q; 7
OPEN = Q, .

LL

1

¥

[[EE] EEj

gsjsls

[} !:',ﬂ |:lr:.

T

S F . Q | |
(] (=]

Y W o
[=) [=]

CSE370, Lecture 24 v

Output encoding

¢ Reuse outputs as state bits
= Why create new functions when you can use outputs?

= Bits from state assignments are the outputs for that state
¥ Take outputs directly from the flip-flops

¢ ad hoc - no tools
= Yields small circuits for most FSMs
= Fits nicely with synchronous Mealy machines

CSE370, Lecture 24 10

FSM partitioning

¢ Break a large FSM into two or more smaller FSMs

¢ Rationale
m Less states in each partition
¥ Simpler minimization and state assignment
¥ Smaller combinational logic
& Shorter critical path

= But more logic overall

¢ Goal

= Minimize communication between partitions
¥ Minimize wires & I/0O

& Partitions are synchronous
= Same clock!!!

CSE370, Lecture 24 11

Example: Partition the machine

& Partition into two halves

CSE370, Lecture 24 12

Introduce idle states

& SA and SB handoff control between machines

CSE370, Lecture 24 . 13

Partitioning rules

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

Rule #2: Destination state transformation
Replace with exit transition from idle state

CRCENCTCMEES o

CSE370, Lecture 24 14

Partitioning rules (con't)

Rule #3: Multiple transitions with same source or destination
Source = Replace by transitions to idle state (SA)
Destination = Replace with exit transitions from idle state

@ C3+C5 gg:ggaf @
-
(s ©

C5-S

Rule #4: Hold condition for idle state
OR exit conditions and invert

C2-S6
@< C2:S6 SA

CSE370, Lecture 24 15

Mealy versus Moore partitions

¢ Mealy machines undesirable
= Inputs can affect outputs immediately
¥ “output” can be a handoff to another machine!!!
= Inputs can ripple through several machines in one clock cycle

& Moore or synchronized Mealy desirable
= Input-to-output path always broken by a flip-flop

= But...may take several clocks for input to propagate to output
& Output may derive from other side of a partition

CSE370, Lecture 24 16

Example: Six-state up/down counter

¢ Break into 2 parts

U = count up
D = count down

CSE370, Lecture 24 17

Example: 6 state up/down counter (con't)

¢ Count sequence S, Sy, S,, S5, S4, So
= S, goes to S, and holds, leaves after S.
= Sc goes to Sy and holds, leaves after S,
= Down sequence is similar

DEE;%?*
74

CSE370, Lecture 24 18

Minimize communication between partitions

¢ Ideal world: Two machines handoff control
= Separate I/0O, states, etc.

¢ Real world: Minimize handoffs and common I/O
= Minimize number of state bits that cross boundary

= Merge common outputs

¢ Look for:
= Disjoint inputs used in different regions of state diagram

= Outputs active in only one region of state diagram

= Isomorphic portions of state diagram
¥ Add states, if necessary, to make them so
= Regions of diagram with a single entry and single exit point

CSE370, Lecture 24 19

Sequential logic: What you should know

¢ Sequential logic building blocks

Latches (R-S and D)

Flip-flops (master/slave D, edge-triggered D & T)
Latch and flip-flop timing (setup/hold time, prop delay)
Timing diagrams

Flip-flop clocking

Asynchronous inputs and metastability

Registers

CSE370, Lecture 24 20

Sequential logic: What you should know

¢ Counters

= Timing diagrams

= Shift registers

= Ripple counters

= State diagrams and state-transition tables
[|

Counter design procedure
1. Draw a state diagram
2. Draw a state-transition table
3. Encode the next-state functions
4. Implement the design

= Self-starting counters

CSE370, Lecture 24 21

Sequential logic: What you should know

¢ Finite state machines

= Timing diagrams (synchronous FSMs)

= Moore versus Mealy versus registered Mealy

= FSM design procedure
1. Understand the problem (state diagram & state-transition table)
2. Determine the machine’s states (minimize the state diagram)
3. Encode the machine’s states (state assignment)
4. Design the next-state logic (minimize the combinational logic)
5.Implement the FSM

= FSM design guidelines
K Separate datapath and control

= One-hot encoding

= FSM partitioning procedure

CSE370, Lecture 24 22

