Lecture §:
Combinational
Verilog

CSE 370, Autumn 2007
Benjamin Ylvisaker

Where We Are

e Last lecture: Minimization with K-maps

® This lecture: Combinational Verilog

® Next lecture: ROMs, PLAs and PALs, oh my!
* Homework 3 ongoing

o Lab 2 done; lab 3 next week

University of Washington, Comp. Sci. and Eng. 2 CSE 370, Autumn, 2007, Lecture 8

Specifying Circuits

e Schematics
o Structural description
¢ Build more complex circuits using hierarchy
e Large circuits are unreadable
e HDLs (Hardware description languages)
e Not conventional programming languages
e Very restricted parallel languages
o Synthesize code to produce a circuit

University of Washington, Comp. Sci. and Eng. 3 CSE 370, Autumn, 2007, Lecture §

Quick History Lesson

e Abel (-1983)
¢ Developed by Data-1/0
o Targeted to PLDs
e Verilog (-1985)
¢ Developed by Gateway (now part of Cadence)
¢ Syntax similar to C
¢ Moved to public domain in 1990
e VHDL (-1987)
¢ DoD sponsored

¢ Syntax similar to Ada

University of Washington, Comp. Sci. and Eng. 4 CSE 370, Autumn, 2007, Lecture §

Verilog and VHDL Dominant

* Both “IEEE standard” languages

¢ Most tools support both

e Verilog is “simpler”
® Less, more concise syntax

e VHDL is more structured
* More sophisticated type system
¢ Better modularity features

University of Washington, Comp. Sci. and Eng. 5 CSE 370, Autumn, 2007, Lecture 8

Simulation and Synthesis

e Simulation
* “Execute” a design with some test data
e Synthesis

¢ Generate a physical implementation

Gate or
Transistor
Description

HDL
Description

Functional
Timing
Validation

Functional
Validation

University of Washington, Comp. Sci. and Eng. 6 CSE 370, Autumn, 2007, Lecture §

Simulation and Synthesis (cont’d)

e Simulation
® Model circuit behavior
¢ Can include timing estimates
o Allows for easier design exploration
¢ Synthesis
¢ Converts HDL code to “netlists”
o Can still simulate the generated netlists
e Simulation and synthesis in the CSE curriculum
¢ 370: Learn simulation

¢ 467: Learn something about synthesis

University of Washington, Comp. Sci. and Eng. 7 CSE 370, Autumn, 2007, Lecture §

Simulation

* You provide an environment

e Use non-circuit constructs (Active-HDL
waveforms, random number generators, etc)

o Can write arbitrary Verilog code

Simulation

Circuit Description
(Synthesizeable)

Test Fixture
(Specification)

University of Washington, Comp. Sci. and Eng, 8 CSE 370, Autumn, 2007, Lecture §

Specifying Circuits in Verilog

e There are three major styles o 2

o Instances ‘n wires g T x
o Continuous assignments g v
292
o “always” blocks
“Structural” “Behavioral”
wire E; wire E; reg E, X, Y;
and gl(E,A,B);| |assign E = A & B;| |always @ (A or B or C)
not g2(Y,C); assign Y = ~ C; begin
or g3(X,E,Y);| |assign X = E | Y; E = A & B;
Y = ~C;
X=E | Y;
end

University of Washington, Comp. Sci. and Eng. 9 CSE 370, Autumn, 2007, Lecture §

Data Types

o Values on a wire
e 0,1, x (unknown or conflict), z (unconnected)
e Vectors
o Al3:0] vector of 4 bits: Al3], Al2], Alil, Alo}
e Interpreted as an unsigned binary number
¢ Indices must be constants
¢ Concatenation
o B={Al3], A3}, Al3], Al3], Alz:0l};
o B ={4{Al3}, Al3:0}
o Style: good to use unnecessary size specs sometimes
e af7:0} = bl7:0} + cl7:0L;
¢ Built-in reductions: C = &Als:7L;

University of Washington, Comp. Sci. and Eng. 10 CSE 370, Autumn, 2007, Lecture §

Data Types That Do Not Exist

e structures (records)

e Pointers

* Objects

* Recursive types

¢ (Remember, Verilog is not C or Java or Lisp

or)

University of Washington, Comp. Sci. and Eng. b CSE 370, Autumn, 2007, Lecture 8

Numbers

o Format: <sign><size><base format><number>
L] I4

¢ Decimal

-4’b1x

o 4-bit 2’s complement of oo1x

12’booo_oroo_orio
¢ 12 bit binary number (s ignored)
12’h4Ab

e 12 bit hexadecimal number

University of Washington, Comp. Sci. and Eng. 2 CSE 370, Autumn, 2007, Lecture §

Operators

Verilog :
Functional > greater than Relational
Oyl e it > greater than or equal fo Re al
-~ < less than Re al
bit-slect o part-sele
0 fselect or part-select - less than or equal fo. Relational
Q parend logical equality Equality
) logical negation Logical logical inequality Equolty
. megetion Biowise
a reduciion AND Roduction cone enually Equolty
1 Teducion OR Roduction case inequolity Equlity
~& reduction NAND Reduction .
-1 reduction NOR Reduction i bitwise AND Bi-wise
" reduction XOR Reduction N -
~norn- | reduction XNOR Reduction oo | D X Bi-vise
+ unary (sign) plus Arithmetic
- unary (sign) minus. Arithmetic ! bit-wise OR Bit-wise
o - s Togical AND Logicel
o replication Replication " logical OR Logical
. . pra— E <onditonal Conditional
/ divide Avrithmetic
% modulus Avrithmetic
. binary plus Acithmetic
- bine in Avrithmetic 1 1
oy minvs vimetic Similar to C operators
<< shift left Shift
>> shiff right Shift
University of Washington, Comp. Sci. and Eng 13 CSE 370, Autumn, 2007, Lecture §

Two Abstraction Mechanisms

e Modules
® More structural

o Heavily used in 370 and “real” Verilog code

¢ Functions
e More behavioral

¢ Used to some extent in “real” Verilog, but not
much in 370

University of Washington, Comp. Sci. and Eng. 4 CSE 370, Autumn, 2007, Lecture 8

Basic Building Blocks: Modules

.

Instantiated, not called

.

Illegal to nest module defs

Instances “execute” in parallel

‘Wires are used for connections

and, or, not built-in primitive modules
T P // first simple example

¢ List output first module smpl(X,Y,A,B,C);
.) input A,B,C;
¢ Arbitrary number of inputs next output X,Y;
o Names are case sensitive wire E;
and gl(E,B,B);
¢ Cannot begin with number not g2(Y,C);
or g3(X,E,Y);
o // for comments endmodule

University of Washington, Comp. Sci. and Eng. 15 CSE 370, Autumn, 2007, Lecture §

Module Ports

AND2

* Modules interact with the rest of
a design through ports

e input
e output

* inout

* Same example with continuous
assignments:

University of Washington, Comp. Sci. and Eng.

// first simple example
module smpl(X,Y,A,B,C);
input A,B,C;
output X,Y;

assign X = (A&B) |~C;
assign Y = ~C;
endmodule

CSE 370, Autumn, 2007, Lecture §

Bigger Structural Example

«+ module xor_gate (out,a,b);

input a,b;

output out;

wire abar, bbar, tl, t2;

not inva (abar,a);

not invb (bbar,b);

and andl (tl,abar,b);

and and2 (t2,bbar,a);

or orl (out,tl,t2);
endmodule

8 built-in gates:
and, or, nand, nor,
buf, not, xor, xnor

University of Washington, Comp. Sci. and Eng

CSE 370, Autumn, 2007, Lecture 8

Behavioral Full Adder

A=
B —
Cin—

—t> Sum

Adder
> Cout

e module full addr

input A, B, Cin;

output Sum, Cout;

assign {Cout, Sum} =
endmodule

(Sum, Cout,A,B,Cin) ;

A + B + Cin;

{Cout, Sum} is a concatenation

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture §

Behavioral 4-bit Adder

e module add4 (SUM, OVER, A, B);

input [3:0] A;

input [3:0] B;

output [3:0] SUM;

output OVER;

assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];
endmodule

University of Washington, Comp. Sci. and Eng, 19 CSE 370, Autumn, 2007, Lecture §

Continuous Assignment

* Continuously evaluated
¢ Think of them as collections of logic gates

¢ Evaluated in parallel

assign A = X | (Y & ~2);

assign B[3:0] = 4'b01XX;
assign C[15:0] = 4'h00ff;

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

University of Washington, Comp. Sci. and Eng. 20 CSE 370, Autumn, 2007, Lecture 8

Hierarchy Example: Comparator

« module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);
endmodule

University of Washington, Comp. Sci. and Eng. 21 CSE 370, Autumn, 2007, Lecture §

4-bit Comparator

« // Make a 4-bit comparator from 4 l-bit comparators

module Compared (Equal,
A4, B4;
Alarger, Blarger;
all,

input

Comparel
Comparel
Comparel
Comparel

[3:
output Equal,
wire e0, el, e2, e3,

0]

cp0 (e0,
cpl (el,
cp2 (e2,
cp3 (e3,

Al0,
All,
Al2,
A13,

alo,

B10,
Bl1,
B12,
B13,

Alarger,

Blarger, A4, B4);

al2, al3, B10, Bl1, B12, B13;
A4(0], 0
A4[1]), B4[1
n4[2], 54[2
A4[31, 3

B4[0]) s
1
1)
1

assign Equal =
assign Alarger =

(€0 & el & e2 & e3);
(R13 | (Rl2 & e3) |
(311 & e3 & e2) |
(R10 & e3 & e2 & el));
assign Blarger = (~Alarger & ~Equal);
endmodule

University of Washington, Comp. Sci. and Eng. 22 CSE 370, Autumn, 2007, Lecture §

Sequential assigns don’t make
any sense

e assign A = X | (Y & ~2);
assign B = W | A;
assign A = Y & Z;

® You can’t reassign a variable with continuous
assignments

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Always Blocks

Variables that appear
on the left hand side in
an always block must
be declared as “reg”s

e reg A, B, C;
Sensitivity list
always @ (W or X or Y or Zje—"" ty
begin

& ~7);
Statements in an always
<« block are executed in

begin seque

All variables must be assigned on
every control patt

(otherwise E/ou get the dreaded
mferred la

University of Washington, Comp. Sci. and Eng. 24

CSE 370, Autumn, 2007, Lecture §

Functions

¢ Functions can be used for combinational logic
that you want to reuse

. module and_gate (out, inl, in2);
input inl, in2;
output out;

assign out = myfunction(inl, in2);

function myfunction;
input inl, in2;
begin
myfunction = inl & in2;
end
endfunction
endmodule

University of Washington, Comp. Sci. and Eng, 25 CSE 370, Autumn, 2007, Lecture §

Verilog Tips

e Do not write C-code
o Think hardware, not algorithms
« Verilog is inherently parallel
« Compilers don’t map algorithms to circuits well
* Do describe hardware circuits
e Tirst draw a dataflow diagram
¢ Then start coding
e References
o Tutorial and reference manual are found in ActiveHDL help
¢ And in today’s reading assignment
¢ “Starter’s Guide to Verilog 2001” by Michael Ciletti

« copies for borrowing in hardware lab

University of Washington, Comp. Sci. and Eng. 26 CSE 370, Autumn, 2007, Lecture 8

Thank You for Your Attention

University of Washington, Comp. Sci. and Eng. 27 CSE 370, Autumn, 2007, Lecture §

Thank You for Your Attention

® Read lab 2
¢ Continue homework 2

¢ Continue reading the book

University of Washington, Comp. Sci. and Eng, 28 CSE 370, Autumn, 2007, Lecture §

