CSE 370 Spring 2006
Introduction to Digital Design

Lecture 22: Optimizing FSMs

Last Lecture
E Ant Brain

Today
B Optimizing FSMs

Administrivia

EHomework 8 out, due Monday, May 22
ENo class Friday, May 19

ELab 8,9 out, Lab 8 due end of next weeks laboratory
section

Finite state machine
optimization

m State minimization
E fewer states require fewer state bits
B fewer bits require fewer logic equations
m Encodings: state, inputs, outputs
B state encoding with fewer bits has fewer equations to
implement
¥ however, each may be more complex
B state encoding with more bits (e.g., one-hot) has simpler
equations
E complexity directly related to complexity of state
diagram
E input/output encoding may or may not be under designer
control

Algorithmic approach to state
minimization
m Goal - identify and combine states that have equivalent
behavior
m Equivalent states:
B same output
k for all input combinations, states transition to same or
equivalent states
m Algorithm sketch
B 1. place all states in one set
B 2. initially partition set based on output behavior
B 3. successively partition resulting subsets based on
next state transitions
E 4. repeat (3) until no further partitioning is required
I states left in the same set are equivalent
E polynomial time procedure

State minimization example

m Sequence detector for 010 or 110

Input

Next State

Output

Sequence Present State | X=0 X=1 X=0 X=1

Reset SO S1 S2 0 0

0 S1 S3 S4 0 0
S2 S5 S6 0 0
S3 SO SO 0 0
S4 SO SO 1 0
S5 SO SO 0 0
S6 SO SO 1 0

Method of successive partitions

Input Next State Output
Sequence Present State | X=0 X=1 X=0 X=
Reset SO S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 SO SO 0 0
01 S4 SO SO 1 0
10 S5 SO SO 0 0
11 S6 SO SO 1 0

(SO S1S2S354S586)

(S0S1S2S3S5) (S4S6)

(S0S3S5) (S1S2) (S4S6)

(S0) (S3S5) (S1S2)

S1is equivalent to S2

S3 is equivalent to S5

(S456)

S4 is equivalent to S6

Minimized FSM

m State minimized sequence detector for 010 or 110

Input Next State Output
Sequence Present State| X=0 X=1 X=0 X=1
Reset SO S1' S1' 0 0
0+1 S1' S3' s4! 0 0]
X0 S3' SO SO 0 0
X1 s4' SO SO 1 0

More complex state
minimization

m Multiple input example

inputs here
present next state output
state 00 01 10 11
SO SO ST 52 S3 il
S1 SO S3 S1 s4 0
S2 S1 S3 S2 s4 1
S3 S1 SO0 S4 S5 0
sS4 SO S1 S2 S5 1
S5 S1 S4 SO S5 0

symbolic state
transition table

Minimized FSM

m Implication chart method
I cross out incompatible states based on outputs

B then cross out more cells if indexed chart entries are
already crossed out

present | next state | output
state 00 01 10 11

SO’ S0 S1 S2 S3 1

S1 SO' S3' S1 S3 0

S2 S1 S3 Ss2 sO 1

S3 S1 SO SO S3 0

minimized state table
(S0==S4) (S3==S5)

Exercise

m Minimize states for sequence detector for 010 or 110
using the implication chart method

Input Next State Output
Sequence Present State | X=0 X=1 X=0 X=1
Reset SO S1 S2 0 0
0 S1 S3 sS4 0 0
1 S2 S5 S6 0 0
00 S3 SO SO 0 0
01 S4 SO SO 1 0
10 S5 SO SO 0 0
11 S6 SO SO 1 0

Minimizing incompletely
specified FSMs

B Equivalence of states is transitive when machine is fully
specified
m But its not transitive when don't cares are present

e.g., state output
SO0 -0 Sliscompatible with both SO and S2
S1 1- butSOand S2 are incompatible
s2 -1

m No polynomial time algorithm exists for determining best
grouping of states into equivalent sets that will yield the
smallest number of final states

Minimizing states may not
yield best circuit

m Example: edge detector - outputs 1 when last two input

changes fromO0to 1

+

or kP oo olo

+

iy
5
(&Y
5]

| PP P OO O|X
P Pk OOoRr o olo
OoOr Pk Or R olo
OoOr Rk O oo oo

Q" =X (Qqxor Qp)
Q" =X Q' Qf

Another implementation of
edge detector

®m "Ad hoc" solution - not minimal but cheap and fast

State assignment

m Choose bit vectors to assign to each “symbolic” state
F with n state bits for m states there are 2" / (2" — m)!
[logn<= m<= 2"
E 2" codes possible for 1st state, 2"-1 for 2nd, 2"-2 for
3rd, ...
E huge number even for small values of n and m
Fintractable for state machines of any size
I heuristics are necessary for practical solutions
B optimize some metric for the combinational logic
E size (amount of logic and number of FFs)
I speed (depth of logic and fanout)
F dependencies (decomposition)

State assignment strategies

m Possible strategies

E sequential — just number states as they appear in the
state table

E random — pick random codes

F one-hot — use as many state bits as there are states
(bit=1 —> state)

F output — use outputs to help encode states

E heuristic — rules of thumb that seem to work in most
cases

B No guarantee of optimality — another intractable problem

One-hot state assignment
m Simple
E easy to encode
E easy to debug
m Small logic functions
E each state function requires only predecessor state
bits as input
B Good for programmable devices
E lots of flip-flops readily available
B simple functions with small support (signals its
dependent upon)
m Impractical for large machines
E too many states require too many flip-flops
B decompose FSMs into smaller pieces that can be
one-hot encoded
m Many slight variations to one-hot
E one-hot + all-0

Heuristics for state assignment

m Adjacent codes to states that share a common next state
E group 1's in next state map

I Qlor o e ; ,
2 o] c=i*a+i*b i/]j i/k

i blc k
m Adjacent codes to states that share a common ancestor state
E group 1's in next state map

I Q|o- o b=i *a i/] k/1

i a |b] —k*
k a [c | c=kra @ @
m Adjacent codes to states that have a common output behavior

E group 1's in output map
| Q| QO C ok . oo -
T b T phLartre @\'QS @\5

ioc|d o] d=i*c

General approach to heuristic
state assignment

m All current methods are variants of this
B 1) determine which states “attract” each other (weighted
pairs)
B 2) generate constraints on codes (which should be in same
cube)
B 3) place codes on Boolean cube so as to maximize
constraints satisfied
(weighted sum)
m Different weights make sense depending on whether we are
optimizing for two-level or multi-level forms
m Can't consider all possible embeddings of state clusters in
Boolean cube
E heuristics for ordering embedding
E to prune search for best embedding
B expand cube (more state bits) to satisfy more constraints

Output-based encoding

m Reuse outputs as state bits - use outputs to help
distinguish states

E why create new functions for state bits when output can

serve as well
E fits in nicely with synchronous Mealy implementations

Inputs Present State Next State Outputs

C TL TS ST H F
0 - — HG HG 0 00 10
- 0 - HG HG 0 00 10
1 1 - HG HY 1 00 10
- - 0 HY HY 0 01 10
- - 1 HY FG 1 01 10
1 0 — FG FG 0 10 00
0 - — FG FY 1 10 00
- 1 - FG FY 1 10 00
- - 0 FY FY 0 10 01
- - 1 FY HG 1 10 01

HG = ST H1' HO' F1 FO’ + ST H1 HO' F1' FO
HY = ST H1' HO' F1 FO’ + ST’ H1' HO F1 FO’
FG = ST H1' HO F1 FO’ + ST’ H1 HO' F1' FO’
HY = ST H1 HO’ F1' FO’ + ST’ H1 HO' F1' FO

Output patterns are unigue to states, we do not
need ANY state bits — implement 5 functions
(one for each output) instead of 7 (outputs plus
2 state bits)

Current state assignment
approaches

m For tight encodings using close to the minimum number
of state bits
E best of 10 random seems to be adequate (averages as
well as heuristics)
B heuristic approaches are not even close to optimality
F used in custom chip design
m One-hot encoding
E easy for small state machines
E generates small equations with easy to estimate
complexity
E common in FPGAs and other programmable logic
m Output-based encoding
E ad hoc - no tools
E most common approach taken by human designers
E yields very small circuits for most FSMs

Sequential logic optimization
summary

m State minimization
E straightforward in fully-specified machines

B computationally intractable, in general (with don't
cares)

m State assignment
E many heuristics
B best-of-10-random just as good or better for most
machines
I output encoding can be attractive (especially for PAL
implementations)

