
CSE 370 Spring 2006
Introduction to Digital Design
Lecture 18: Moore and Mealy

Machines
Last Lecture

Finite State Machines

Today
Moore and Mealy Machines

Counter/shift-register model
Values stored in registers represent the state of the
circuit
Combinational logic computes:

next state
function of current state and inputs

outputs
values of flip-flops

Inputs

Outputs

Next State

Current State

next state
logic

General state machine model
Values stored in registers represent the state of the circuit
Combinational logic computes:

next state
function of current state and inputs

outputs
function of current state and inputs (Mealy machine)
function of current state only (Moore machine)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

State machine model (cont’d)
States: S1, S2, ..., Sk

Inputs: I1, I2, ..., Im
Outputs: O1, O2, ..., On

Transition function: Fs(Si, Ij)
Output function: Fo(Si) or Fo(Si, Ij)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

Clock

Next State

State

0 1 2 3 4 5

Comparison of Mealy and
Moore machines

Mealy machines tend to have less states
different outputs on arcs (n2) rather than states (n)

Moore machines are safer to use
outputs change at clock edge (always one cycle later)
in Mealy machines, input change can cause output
change as soon as logic is done – a big problem when
two machines are interconnected – asynchronous
feedback may occur if one isn’t careful

Mealy machines react faster to inputs
react in same cycle – don't need to wait for clock
in Moore machines, more logic may be necessary to
decode state into outputs – more gate delays after clock
edge

Comparison of Mealy and
Moore machines (cont’d)

Moore

Mealy

Synchronous Mealy

state feedback

inputs

outputsreg

combinational
logic for
next state logic for

outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

current next
reset input state state output
1 – – A
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

Specifying outputs for a
Moore machine

Output is only function of state
specify in state bubble in state diagram
example: sequence detector for 01 or 10

current next
reset input state state output
1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

Specifying outputs for a
Mealy machine

Output is function of state and inputs
specify output on transition arc between states
example: sequence detector for 01 or 10

Registered Mealy machine
(really Moore)

Synchronous (or registered) Mealy machine
registered state AND outputs
avoids ‘glitchy’ outputs
easy to implement in PLDs

Moore machine with no output decoding
outputs computed on transition to next state rather
than after entering
view outputs as expanded state vector

Inputs
Outputs

Current State

output
logic

next state
logic

Vending
Machine

FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

Example: vending machine
Release item after 15 cents are deposited
Single coin slot for dimes, nickels
No change

Example: vending machine
(cont’d)

Suitable abstract representation
tabulate typical input sequences:

3 nickels
nickel, dime
dime, nickel
two dimes

draw state diagram:
inputs: N, D, reset
output: open chute

assumptions:
assume N and D asserted
for one cycle
each state has a self loop
for N = D = 0 (no coin)

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

S8
[open]

D

S7
[open]

N

Example: vending machine
(cont’d)

Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

present state inputs next state output
Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

Example: vending machine
(cont’d)

Uniquely encode states

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

Example: Moore implementation

Mapping to logic
0 0 1 1

0 1 1 1

X X 1 X

1 1 1 1

Q1D1

Q0

N
D

0 1 1 0

1 0 1 1

X X 1 X

0 1 1 1

Q1D0

Q0

N
D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1Open

Q0

N
D

present state inputs next state output
Q3 Q2 Q1 Q0 D N D3 D2 D1 D0 open
0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 - - - - -

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

1 0 0 0 - - 1 0 0 0 1

D0 = Q0 D’ N’

D1 = Q0 N + Q1 D’ N’

D2 = Q0 D + Q1 N + Q2 D’ N’

D3 = Q1 D + Q2 D + Q2 N + Q3

OPEN = Q3

Example: vending machine
(cont’d)

One-hot encoding

Equivalent Mealy and Moore
state diagrams

Moore machine
outputs associated
with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

Mealy machine
outputs associated with
transitions

Example: Mealy implementation

0¢

10¢

5¢

15¢

Reset/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0
present state inputs next state output

Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 1
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 – – –

1 1 – – 1 1 1

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open

Q0

N
D

Example: Mealy implementation

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

make sure OPEN is 0 when reset
– by adding AND gate

Vending machine: Moore to
synch. Mealy

OPEN = Q1Q0 creates a combinational delay after Q1
and Q0 change in Moore implementation
This can be corrected by retiming, i.e., move flip-flops
and logic through each other to improve delay
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
Implementation now looks like a synchronous Mealy
machine

it is common for programmable devices to have FF at
end of logic

Vending machine: Mealy to
synch. Mealy

OPEN.d = Q1Q0 + Q1N + Q1D + Q0D
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D

0 0 1 0

0 0 1 1

1 0 1 1

0 1 1 1

Q1Open.d

Q0

N
D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open.d

Q0

N
D

D Q

Q
B

A

clock

out

D Q

Q

D Q

Qclock

outA

B

Mealy and Moore examples

Recognize A,B = 0,1
Mealy or Moore?

B

A out

D Q

Q

D Q

Q

D Q

Q

D Q

Q

A

B

clock

out

D Q

Q

D Q

Q

A

B

clock

out

Mealy and Moore examples
(cont’d)

Recognize A,B = 1,0 then 0,1
Mealy or Moore?

HDLs and Sequential Logic
Flip-flops

representation of clocks - timing of state changes
asynchronous vs. synchronous

FSMs
structural view (FFs separate from combinational
logic)
behavioral view (synthesis of sequencers – not in this
course)

Data-paths = data computation (e.g., ALUs,
comparators) + registers

use of arithmetic/logical operators
control of storage elements

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

1/00/0

0/0

1/1

zero
[0]

one1
[0]

Moore Mealy

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;

parameter zero = 2’b00;
parameter one1 = 2’b01;
parameter two1s = 2’b10;

reg out;
reg [2:1] state; // state variables
reg [2:1] next_state;

always @(posedge clk)
if (reset) state = zero;
else state = next_state;

state assignment
(easy to change,
if in one place)

Verilog FSM - Reduce 1s
example

Moore machine

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

always @(in or state)

case (state)
zero:

// last input was a zero
begin
if (in) next_state = one1;
else next_state = zero;

end
one1:

// we've seen one 1
begin
if (in) next_state = two1s;
else next_state = zero;

end
two1s:

// we've seen at least 2 ones
begin
if (in) next_state = two1s;
else next_state = zero;

end
endcase

crucial to include
all signals that are
input to state determination

Moore Verilog FSM (cont’d)

note that output
depends only on state

always @(state)
case (state)
zero: out = 0;
one1: out = 0;

two1s: out = 1;
endcase

endmodule

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next_state;
always @(posedge clk)
if (reset) state = zero;
else state = next_state;

always @(in or state)
case (state)
zero: // last input was a zero
begin
out = 0;
if (in) next_state = one;
else next_state = zero;

end
one: // we've seen one 1
if (in) begin

next_state = one; out = 1;
end else begin

next_state = zero; out = 0;
end

endcase
endmodule

Mealy Verilog FSM

1/00/0

0/0

1/1

zero
[0]

one1
[0]

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always @(posedge clk)
if (reset) state = zero;
else
case (state)
zero: // last input was a zero
begin
out = 0;
if (in) state = one;
else state = zero;

end
one: // we've seen one 1
if (in) begin

state = one; out = 1;
end else begin

state = zero; out = 0;
end

endcase
endmodule

Synchronous Mealy Machine

Finite state machines summary

Models for representing sequential circuits
abstraction of sequential elements
finite state machines and their state diagrams
inputs/outputs
Mealy, Moore, and synchronous Mealy machines

Finite state machine design procedure
deriving state diagram
deriving state transition table
determining next state and output functions
implementing combinational logic

Hardware description languages

