CSE 370 Spring 2006
Introduction to Digital Design

Lecture 3: Boolean Algebra

Last Lecture
B Binary and other bases
E Negative binary numbers
F Switches/CMOS

Today
F CMOS
E Basic Boolean Functions
E Boolean Algebra

Administrivia

m Hand in Homework 1: Homework 2 on the web this
afternoon.

H Lab 2 is on the web, you might want to start the tutorial
before you labe session.

m Office hours change:
Adrienne Wang W 1-3pm in 003 Allen Center

Switching Networks

m Switch settings determine whether a conducting network
to a light bulb
B Larger computations?
E Use a light bulb (output) to set other switches (input)
E Example: Mechanical relay

conducting ||||
path composed
of switches
closes circuit

current flowing through coil
magnetizes core and causes normally
closed (nc) contact to be pulled open

when no current flows, the spring of the contact
returns it to its normal position

Transistor Networks

m Relays no more: slow and big
® Modern digital electronics predominately uses CMOS
technology
E MOS: metal-oxcide-semiconductor
E C: complementary (both p and n type transistors
arranged so that power is dissipated during
switching.)

MOS Transistors

B MOS transistors have three terminals: drain, gate, and
source

MOS Networks

JoTx | Y
o\\
1| o

E Act as switches: if the voltage on the gate terminal is X erlaf[t. is thh_e
(some amount) higher/lower than the source terminal betrv?/gelrggsa;\% y?
then a conducting path will be established between 3v
the drain and source terminals. o el X | y
. s loy
I N &Y i Vo (=
s ke 3 vol O Velts
s— Lp prsmigh g—F L, 5" ov volts
- =3 Uity
n-channel —9—°— p-channel k= O WHS X
open when voltage at G is low closed when voltage at G is low Qy ——— 3 —
closes when: opens when: Ov
voltage(G) > voltage (S) + ¢ voltage(G) < voltage (S) — ¢ Y \l/
0\1 ————"\ﬂ O
Two Input Networks 2 to 1 Boolean Functions
X Y There are 16 possible two bit input one bit output
- MO 2= - F
what is the
relationship NoR /\m
between x, y and z L X Y IFO 16 possible functions (FO-F15)
Y% ! 0 00 0 0O OO O OO 1 1 1 1 1 1 1 1
" y 1 2 0 10 0 0 0 1 1 1 1 0 0 O O 1 1 1 1
1 0/0 0 2 1 0 0 1 1 0 0 1 1 0 0 1 1
=Y 2V 1 1'o0 120 12 0 1 0 1 0 1 0 1 0 1 0 1lg_
X Y 0 volts 0 volts o - / \ N \ N
X Y - notY notX
e Ovolts 3volts | TV aVv /?XLdY T X xorY X=Y 7) Xr;LdYY
- not n
3v] 3volts 0volts | YV oV /(\ /‘ ! ”—)t((rﬂ—;(Y) 7\ %
Z, 3volts 3volts |0V OV
4 & o { [s . oK .
oV o 1 \ - (General: k input bits, one output bit: 2¥ such functions)
L = | O
(\ o o

Costs

m 0 (FO) and 1 (F15): require 0 switches, directly connect
output to low/high

m X (F3) and Y (F5): require O switches, output is one of —
inputs

m X' (F12) and Y’ (F10): require 2 switches for "inverter" or
NOT-gate

m X norY (F4) and X nand Y (F14): require 4 switches
mXorY (F7)and X and Y (F1): require 6 switches

EX=Y (F9) and X ® Y (F6): require 16 switches

NOTs, NANDs, NORs cost the least

_— —

NOT, NOR, NANDS, Oh My!

m Can we implement all logic functions from NOT, NOR,
NANDs?
m Example: Implementing NOT(X NAND Y)
is the same as implementing (X AND Y)
m In fact we can implement a NOT using a NAND or a NOR:
NOT(X) = X NAND X NOT(X)=Y NOR Y

m In fact NAND and NOR can be used to implement each
other: e —
X NAND Y=NOT(NOT(X) NOR NOT(Y)) Mors
X NOR Y=NOT(NOT(X) NAND NOT(Y))

m To sort through the mess of what we have created we will
construct a mathematical framework: Boolean Algebra

Boolean Algebra

m A set of elements B together with a two binary operations,
addition, {+}, and multiplication, {¢} which satisfy the axioms:

B B contains at least two nonequal elements fg g =R
a (closure) For every a,bin B
atbisinB a*bisin B
v commutative) For every a,b in B
a+b=b+a asb=bea
S (associative) For every a,b,cin B
(at+b)+c=a+(b+c) as(bec)=(asb)sc
L/l (identity) There exists identity elements for + and ¢, such that for
everyainB
a+0=a asl=a

</l (distributive) For every a,b,cin B
a+(bec)=(a+b)+(a+c) as(b+c)=(asb)+(asc)

a (complement) For each a in B there exists an element @’ in B, such

that a+a’'=1 and a+a’=0

A Boolean Algebra

m A Boolean Algebra: Ot0= 0
B the set B={0,1} o+ = |
B binary operation + = logical OR l+o= |

B binary operation « = logical AND (Fl =)
B complement ’ = logical NOT

-

Q0

00
m These satisfy the above axioms 0{(; h

(R
m We will often deal with variable representin

from the set:
Example: (X+Y)¢(X+2) <
o VR

(MorY) AN (X ok 2)

Q@ ~ 0

an element

Boolean Functions

m Boolean Function
B function from k input bits to one output bit

X

x2

: —F
Xkl *
Xk

E All such functions can be represented by a truth table

<
N

RP|IRP(PIPO|OCO|O|O|X
P|IP(O|O(FR,|P|O|O

rlo|r|lo|r|olr|o
—ISIO= TS |~ [—[m

Boolean Functions and Algebra

m All Boolean Functions can be represented by an
expression in Boolean Algebra using ANDs, ORs, and
NOTs:

fams
Y bt I yvlzle l/
x|Y|F X X! XMeY4 0fo]0)
ololo &6 © o 0011/
ol1[z ¢ © \ ol1lo]12 Yy
1lol1 6 1 1 ol1[1]0 . 1
1110 6 o o 1/o]ofo (’:XLY'JfK-V'ZI
1]/ol1]o0 VRS
{ RV 1{1]/0]|0
Fo XY Y iz X2

Universality of NAND/NOR

m All Boolean Functions can be represented by an
expression in Boolean Algebra using ANDs, ORs, and
NOTs.

But we can express AND, OR, and NOT in terms of NAND:
X' = X NAND X &~
X AND Y = (X NAND Y)Y = (X wawp ¥ | Npao (Y NA# 9~
X OR Y = (X' NAND Y’)

But we can express AND, OR, and NOT in terms of NOR:
X =X NOR X -
XORY =(XNORYY
XAND Y = (X' NOR Y’)

Duality

rAll Boolean expressions have logical duals

®rAny theorem that can be proved is also proved for its dual
rReplace: ¢ with +, + with ¢, 0 with 1, and 1 with 0

rl_eave the variables unchanged

Example: XF0=0 is dual to X-t=1
Y+o=¥X Yol =X
Do not confuse Duality with de’Morgan’s theggem.

>(+O X
\:
X

.

\Je——”

Axioms and Theorems

. Identity: X+0=X Dual: X1 =X
. Null: X+1=1 Dual: X«0=0
. Idempotent: X+ X =X Dual: X« X=X
. Involution: (X')' =X

. Complementarity: X + X' = Dual: X X'=0

. Commutative: X +Y =Y + X Dual: XeY =Y X

. Associative: (X+Y)+Z=X+(Y+2) Dual: (XeY)eZ=Xe(Y*Z)

. Distributive: Xe(Y+2Z)=(X*Y)+(X*Z) Dual: X+(YZ)=(X+Y)+(X+2)
. Uniting: XeY+XeY'=X Dual: (X+Y)e(X+Y")=X

10. Absorption: X+ XY =X Dual: X (X+Y)=X

11. Absorption2: (X +Y)eY=XeY Dual:(X*Y)+Y=X+Y
12. Factoring: (X +Y) s (X' + 2) = Dual: XeY + X ¢Z=
XeZ+ XY X+2Z)s(X +Y)

© 0N 01T &~ WN PP

Axioms and Theorems

13. Concensus: (X*Y)+(YeZ)+ (X' ¢Z)= XeY+X oZ

Dual: X+Y)e(Y+2Z)e (X +2Z)=(X+Y)e (X +2)

14. DeMorgan’'s Law: (X +Y +..) =X Y e .

Dual: (XeYe..)=X+Y+ ..

15. Generalized DeMorgan’s Laws: f'(X1,X2,...,Xn,0,1,+,¢) =
f(X1',X2',...,Xn",1,0,,+)

Notice the DeMorgan is not Duality: Duality is not a way to rewrite
an expression, it is a meta-theorem.

16. Generalized Duality:
f (X1, X5,..,X,,0,1,+,0) < (X, X,,...,X;,,1,0,0,4)

Proving Theorems

F=yYye Y = X
B Example 1: Prove the uniting theorem-- XeY+XeY'=X
Distributive XeY+XoY' = Xeo(Y+Y') (3)
Complementarity = Xe(1) (ey'= |
Identity =X

m Example 2: Prove the absorption theorem-- X+XeY=X

Identity X+XeY = (Xo1)+(XeY)
Distributive = Xe(1+Y)
Null = Xo(L¥

Identity =X

Activity

m Example 3: Prove the consensus theorem--
(XY)+(YZ)+(X'Z)= XY+X'Z

m Example 3: Prove the consensus theorem--

Exercise

(XY)+(YZ)+(X'Z)= XY+X'Z

Complementarity XY+YZ+X'Z = XY+(X+X")YZ + X'Z
= XYZ+XY+X'YZ+X'Z

Distributive

¥ Use absorption {AB+A=A} with A=XY and B=Z

Rearrange terms

¥ Use absorption {AB+A=A} with A=XZ and B=Y

= XY+X'YZ+X'Z
= XY+X'ZY+X'Z

XY+YZ+X'Z = XY+X'Z |

Proving Theorems

m Prove by using “Perfect Induction” also called “Enumeration”
m Cumbersome for very large expressions

‘% o X Y X Y [(X+Y) XeY
(X+Y)y=X-eY 0 0 1 1 [i§ il
NOR is equivalent to AND o 1 1 0) 2]
with inputs complemented i 2 8 (1) (£ g

o X Y X Y |[(XeY) X +Y
XeY)y=X+Y 0 0 1 1 1 1
NAND is equivalent to OR 0 é é 0 1 i

ith i 1 1 1

with inputs complemented 1 1 0 0 0 0

Logic Simplification

m Use the axioms to simplify logical expressions

— Why? To use less hardware
m Example: A two-level logic expression

Z =A'BC + AB'C' + AB'C + ABC' + ABC

=AB'C + AB'C'+ A'BC + ABC' + ABC rearrange

= AB'(C + C') + ABC + AB(C' + C)

=AB'+ ABC + AB

=AB'+ AB + ABC

_ . . Llef= 1

=A(B'+B) + ABC

=A+ABC A= 4
Absorption #2D {(X *Y")+Y=X+Y} with X=BC and Y=A

Z=A+BC v

distributive
comp.
rearrange
distributive
comp.

Example: Full Adder

m 1-bit binary adder
— Inputs: A, B, Carry-in g Adder
— Outputs: Sum, Carry-out cin —

in A
Clv\ % ut ﬂmﬂ\(&l(

m %‘mﬂi\ﬂ d)(}o"'?s;

S = A'B'Cin + A'BCin' + AB'Cin" + ABCin

—— Sum
— Cout

ﬁ

P OORFrRORFRFOWm

C

Cout = A'BCin + AB'Cin + ABCin' + ABCin

PFFRrPFRPP,OOOO

PRPOORFRPF, OO
PORPRPORFRORFrO
Pk, PFPORFPOOO|0

Simplification of Carry Out

Cout = A'BCin + AB'Cin + ABCin' + ABCin

= A'BCin + AB'Cin + ABCin' + ABCin + ABCin,

= A'BCin + ABCin + AB'Cin + ABCin' + ABCin
/—«(A'jA)BCin + AB'Cin + ABCin' + ABCin

= (DBCin + AB'Cin + ABCin' + ABCin

= BCin + AB'Cin + ABCin' + ABCin + ABCin\

associative

= BCin + AB'Cin + ABCin + ABCin' + ABCin
= BCin + A(B'+B)Cin + ABCin' + ABCin

= BCin + A(1)Cin + ABCin' + ABCin

= BCin + ACin + AB(Cin'+Cin) AsstrL ot
= BCin + ACin + AB(1)

= BCin + ACin + AB

idempotent

