Working with combinational logic

Simplification
o two-level simplification
o exploiting don't cares
o algorithm for simplification
Logic realization
o two-level logic and canonical forms realized with NANDs and NORs
o multi-level logic, converting between ANDs and ORs
Time behavior
Hardware description languages

Autumn 2006 CSE370 - III - Working with Combinational Logic 1

Design example: 2x2-bit multiplier

A2 A1 B2 B1 [P8 P4 P2 P1
0 0 0 O 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
Al P1 01 0 O 0 0 0 0
0 1 0 0 0 1
A2 P2 10/0 0 1 0
Bl P4 1 1 0 0 1 1
1 0 0 O 0 0 0 0
B2 P8 0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0
1 1 0 O 0 0 0 0
block diagram 01 |0 0 1 1
and 1 0 0 1 1 0
truth table 1141 0 0 1

4-variable K-map
for each of the 4
output functions

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 2

Design example: 2x2-bit multiplier (activity)

A2 A2
- K-map for P4
ol olol o K-map for P8 p ol ol ol o
o|loflo]o o|loflo]o
Bl Bl
oloj|1]o0 ol o0o]o]| 1
B2, B2
olojo]o ol o0o]1]1
1 1
A2 A2
ol olol o K-map for P2 K-map for P1 ol ol ol o
ol o 1] 1 ol 1|1] o0
Bl Bl
ol 1|01 o110
B2 B2
o110 olo]o|o
Al A1l
Autumn 2006 CSE370 - III - Working with Combinational Logic 3

Definition of terms for two-level simplification

Implicant
o single element of ON-set or DC-set or any group of these elements that can
be combined to form a subcube
Prime implicant
o implicant that can't be combined with another to form a larger subcube
Essential prime implicant
o prime implicant is essential if it alone covers an element of ON-set
o will participate in ALL possible covers of the ON-set
o DC-set used to form prime implicants but not to make implicant essential
Objective:
o grow implicant into prime implicants
(minimize literals per term)

o cover the ON-set with as few prime implicants as possible
(minimize number of product terms)

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 4

Examples to illustrate terms

A
o I x 1T o 6 prime implicants:
— A'B'D, BC', AC, A'C'D, AB, B'CD
[1 1] Ul o / \
B D .
essential
1ff o ||zl 2
T |
o o (]| 1 minimum cover: AC + BC' + A'B'D
A
5 prime implicants: of o1y o
BD, ABC', ACD, A'BC, A'C'D _— [1 1J Dl o
— — D
essential 0 |\1 [1 1
C
- . e ofl1j)fo|o
minimum cover: 4 essential implicants)
Autumn 2006 CSE370 - III - Working with Combinational Logic 5

Algorithm for two-level simplification

Algorithm: minimum sum-of-products expression from a Karnaugh map

o Step 1: choose an element of the ON-set

o Step 2: find "maximal” groupings of 1s and Xs adjacent to that element
consider top/bottom row, left/right column, and corner adjacencies
this forms prime implicants (number of elements always a power of 2)

o Repeat Steps 1 and 2 to find all prime implicants

o Step 3: revisit the 1s in the K-map
if covered by single prime implicant, it is essential, and participates in final cover
1s covered by essential prime implicant do not need to be revisited

Step 4: if there remain 1s not covered by essential prime implicants
select the smallest number of prime implicants that cover the remaining 1s

(]

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 6

‘ Algorithm for two-level simplification
(example)

A A
X 1 0 1 1
0 1 1 1 0 1 1 1
D D
0 X X 0 0 X X 0
c c
0 1 0 1 0 1 0 1
\—
3 3

2 primes around A'BC'D’

Autumn 2006 CSE370 - III - Working with Combinational Logic

‘ Algorithm for two-level simplification
(example)

A A
X 1 0 1 1
0 1 1 1 0 1 1 1
D D
0 X X 0 0 X X 0
C C
0 1 0 1 0 1 0 1 0 1 0 1
B B
2 primes around A'BC'D’ 2 primes around ABC'D

Autumn 2006 CSE370 - 111 - Working with Combinational Logic

‘ Algorithm for two-level simplification
(example)

A A
X 1 0 1 0 1
0 1 1 1 0 1 1 1

D D
0 X [X 0 0 X || X 0
C C
0 1 0 1 0 1 0 1
—
B B
2 primes around A'BC'D’ 2 primes around ABC'D
A

0 1 0 1

3 primes around AB'C'D*

Autumn 2006 CSE370 - III - Working with Combinational Logic 9

‘ Algorithm for two-level simplification
(example)

A A
X 1 0 1 0 1
0 1 1 1 0 1 1 1
D D
0 X X 0 0 X X 0
C C
0 1 0 1 0 1 0 1
—
B
2 primes around A'BC'D’ 2 primes around ABC'D
. A A
1 0 X 1 0 1
o [z||[2]]l2 o1l 1] 1
D D
0 X X 0 0 X X 0
Cc C
0 1 0 1 0 1 0 1
A — ! AN— ! !
B
3 primes around AB'C'D’ 2 essential primes

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 10

‘ Algorithm for two-level simplification
(example)

A A
X 1 0 1 0 1
0 1 1 1 0 1 1 1
D D
0 X X 0 0 X X 0
C C
0 1 0 1 0 1 0 1
—
B B
2 primes around A'BC'D
A A
1)
1 0 X 1 0 1
o |[2||[2]][2] 5 ol tfj1] 1],
0 X X 0 0 X X 0 0 X X 0
C C C
0 1 0 1 0 1 0 1 0 1 0 1
A— ! AN— ! ! —
3 primes around AB'C'D* 2 essential primes minimum cover (3 primes)
Autumn 2006 CSE370 - 111 - Working with Combinational Logic 11
Activity

= List all prime implicants for the following K-map:
A

= Which are essential prime implicants?

= What is the minimum cover?

Autumn 2006 CSE370 - III - Working with Combinational Logic 12

Activity

List all prime implicants for the following K-map:

x| o|[x]| o
o |1 [[[x 1}
D cD’ BC BD
o lx [Ix]l o
c _
[x 1|11 1}

Which are essential prime implicants? cp’

What is the minimum cover? CcD’

Autumn 2006

CSE370 - III - Working with Combinational Logic

AB

BD

BD

ACD

AC’D

AC’D

Implementations of two-level logic

Sum-of-products

o AND gates to form product terms (minterms)
o OR gate to form sum

Product-of-sums

o OR gates to form sum terms (maxterms)
o AND gates to form product

Autumn 2006

CSE370 - 111 - Working with Combinational Logic

14

Why NANDs and NORs

CMOS technology makes it easier to build NANDs and NORs
than ANDs and ORs

MOS transistors have three terminals: drain, gate, and source
o N-type pass “0” well, P-type pass “1” well

G G
s—I L—p s—I L,
n-channel p-channel

open when: closed when:
voltage at G is low voltage at G is low

closed when: open when:

voltage(G) > voltage (S/D) + ¢ voltage(G) < voltage (S/D) — ¢
Autumn 2006 CSE370 - III - Working with Combinational Logic 15

A simple MOS transistor network (1-input)

X what is the
relationship
‘l, between x and y?
3y —J | L—
X z
? Z 0 volts
ov— 1 3 volts

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 16

Two input networks

3v

}o-><

L

what is the relationship
between X, Y and Z1 and Z2?

i
T

ov—I 1 [1 X Y Z1 72
X Y 0 volts 0 volts
Qo Qo 0 volts 3 volts
3v —JI |1 11
3 volts 0 volts
Z2 3 volts 3 volts

1
Ov E‘—

Autumn 2006 CSE370 - I1II - Working with Combinational Logic 17

Two-level logic using NAND and NOR gates

NAND-NAND and NOR-NOR networks

o de Morgan'slaw: (A+B) = A’ B’ (A*B)y = A+PB
o written differently: A+B = (A’*B’) (A*B) = (A" +B)
In other words —

o ORis the same as NAND with complemented inputs

o AND is the same as NOR with complemented inputs

o NAND is the same as OR with complemented inputs

o NOR is the same as AND with complemented inputs

o> e or) Ja0)- e a5
e Juop fwor) e T]NOR-

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 18

Two-level logic using NAND gates (cont’d)

= OR gate with inverted inputs is a NAND gate
o de Morgan’s: A +B =(A+B)

= Two-level NAND-NAND network
o inverted inputs are not counted
o in a typical circuit, inversion is done once and signal distributed

A>T Ao L

Autumn 2006 CSE370 - III - Working with Combinational Logic 19

Two-level logic using NOR gates (cont’d)

= AND gate with inverted inputs is a NOR gate
o de Morgan’s: A B =(A+B)

= Two-level NOR-NOR network
o inverted inputs are not counted
o in atypical circuit, inversion is done once and signal distributed

’] > Dl
> 7 T

: St -

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 20

] >

Conversion between forms (cont’d)

= Example: map AND/OR network to NOR/NOR network
A

B:jﬁ

1)
A_—{>°__:-> NOR s INOR)}
] -

B —
T > FoR»- >
c —~{>oj
_ —_—JNOR —9INOR
D —{>o- \D
/ Step 1

Step 2
conserve conserve
"bubbles" "bubbles"
Autumn 2006

CSE370 - III - Working with Combinational Logic 21

‘ Conversion between forms (cont’d)

= Example: verify equivalence of two forms

Z={[(A+By+(C+D)] Y
={ A +B) e (C+D) Y
= (A +B) + (C+DY
= (A*B)+ (CeD VvV

Autumn 2006 CSE370 - III - Working with Combinational Logic 22

‘ Activity: convert to NAND gates

DT>

o oOow >

Autumn 2006 CSE370 - III - Working with Combinational Logic

23

Activity: convert to NAND gates

= Example
A A—m
(@) B . B . (b)
C X C X
D D
original circuit add double bubbles at inputs
A
A X
© 2 :] 3 F
\X B
\D C \X
\D '

distribute bubbles

) insert inverters to fix mismatches
some mismatches

Autumn 2006 CSE370 - 111 - Working with Combinational Logic

24

Multi-level logic

x=ADF + AEF+ BDF+ BEF+ CDF + CEF + G
o reduced sum-of-products form — already simplified
o 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even

exist!)

o 25 wires (19 literals plus 6 internal wires)
x=(A+B+C)(D+E)F + G

o factored form — not written as two-level S-o-P

o 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
o 10 wires (7 literals plus 3 internal wires)

Autumn 2006

OT Mg Ow>

CSE370 - III - Working with Combinational Logic 25

Conversion of multi-level logic to NAND gates

Level 1 Level 2 Level 3 Level 4

—) C) |~
F=A (B te D) *BC original D_:I r_D _D '__D_F

Autumn 2006

B J—
AND-OR A |‘
network Bl
S =llD;

conservation of
bubbles

sH_n

introductionand o | I :D __:D—F
e [
\EE;

redrawn in terms S: :D f:‘jw --D “:D’F

of conventional \B I'
NAND gates A

CSE370 - 111 - Working with Combinational Logic 26

Conversion of multi-level logic to NORs

Level 1 Level 2 Level 3

F=A(B+CD)+BC |

original
AND-OR
network A

| SIS —:‘D |

Level 4

Cc—
introduction and ';—

conservation of

B 200

bubbles ~ A—
B— o
\C_. o
\C
, o] >] > T
redrawn in tgrms B i
of conventional \A
NOR gates
\B
Cc

s

Autumn 2006 CSE370 - III - Working with Combinational Logic

27

Summary for multi-level logic

Advantages

o circuits may be smaller

o gates have smaller fan-in

o circuits may be faster

Disadvantages

o more difficult to design

o tools for optimization are not as good as for two-level
o analysis is more complex

Autumn 2006 CSE370 - 111 - Working with Combinational Logic

28

Time behavior of combinational networks

Waveforms
o visualization of values carried on signal wires over time
o useful in explaining sequences of events (changes in value)
Simulation tools are used to create these waveforms
o input to the simulator includes gates and their connections
o input stimulus, that is, input signal waveforms
Some terms
o gate delay — time for change at input to cause change at output
min delay — typical/nominal delay — max delay
careful designers design for the worst case
o rise time — time for output to transition from low to high voltage
o fall time — time for output to transition from high to low voltage
o pulse width — time that an output stays high or stays low between changes

Autumn 2006 CSE370 - III - Working with Combinational Logic 29

Momentary changes in outputs

Can be useful — pulse shaping circuits

Can be a problem — incorrect circuit operation
(glitches/hazards)

Example: pulse shaping circuit ATDQ‘B‘D"—C‘D"JFD— F

o A*A=0

o delays matter . L
[| T | I S
E 1 | I E—
C I
[—
F

D remains high for
three gate delays after]
A changes from low to high pulse 3 gate-delays wide

—j - 1
\ F is not always O

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 30

Oscillatory behavior

Another pulse shaping circuit
resistor:

i DT

close switch =

—"\\\— +

initia.IIy open switch
undefined
% / 100 | 200

[l =

20 m o3

Autumn 2006 CSE370 - III - Working with Combinational Logic 31

Hardware description languages

Describe hardware at varying levels of abstraction
Structural description

o textual replacement for schematic

o hierarchical composition of modules from primitives
Behavioral/functional description

o describe what module does, not how

o synthesis generates circuit for module

Simulation semantics

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 32

HDLs

Abel (circa 1983) - developed by Data-I/O

o targeted to programmable logic devices

o not good for much more than state machines

ISP (circa 1977) - research project at CMU

o simulation, but no synthesis

Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
o similar to Pascal and C

o delays is only interaction with simulator

o fairly efficient and easy to write

o |EEE standard

VHDL (circa 1987) - DoD sponsored standard

o similar to Ada (emphasis on re-use and maintainability)
o simulation semantics visible

o very general but verbose

o |EEE standard

Autumn 2006 CSE370 - III - Working with Combinational Logic 33

Verilog

Supports structural and behavioral descriptions

Structural

o explicit structure of the circuit

o e.g., each logic gate instantiated and connected to others
Behavioral

o program describes input/output behavior of circuit

o many structural implementations could have same behavior

o e.g., different implementation of one Boolean function

We’'ll mostly be using behavioral Verilog in Aldec ActiveHDL
o rely on schematic when we want structural descriptions

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 34

Structural model

module xor_gate (out, a, b);

input a, b;
output out;
wire abar, bbar, tl, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate andl (tl1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate orl (out, tl, t2);

endmodule

Autumn 2006 CSE370 - III - Working with Combinational Logic

Simple behavioral model

Continuous assignment

module xor_gate (out, a, b);
input a, b;

output out; / simulation register -
out; keeps track of

reg
value of signal

assign #6 out = a ™ b;

endmodule
delay from input change

to output change

Autumn 2006 CSE370 - 111 - Working with Combinational Logic

36

Simple behavioral model

always block
module xor_gate (out, a, b);
input a, b;
output out;
reg out;

always @(a or b) begin
#6 out = a ™ by

end
endmodule specifies when block is executed
ie. triggered by which signals
Autumn 2006 CSE370 - I1II - Working with Combinational Logic 37

Driving a simulation through a “testbench”
g g

module testbench (X, y);

reg [1:0] cnt;
initial begin __——[|initial block executed

AL only once at start
cnt = 0; _ of simulation
repeat (4) begin
#10 cnt = cnt + 1;
$display ('@ time=%d, x=%b, y=%b, cnt=%b",
$time, x, y, cnt); end

#10 $Finish; \| ,
print to a console
end
assign x = cnt[1]; directive to stop
assign y = cnt[0]; simulation
endmodule

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 38

Complete simulation

Instantiate stimulus component and device to test in a
schematic

a z
X i
test-bench y D—

b

Autumn 2006 CSE370 - III - Working with Combinational Logic 39

Comparator example

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (A & ~B);

assign #3 Alarger (A & ~B);

assign #3 Blarger (~A & B);
endmodule

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 40

Hardware description languages vs.
programming languages

Program structure

o instantiation of multiple components of the same type

o specify interconnections between modules via schematic

o hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)
Assignment

o continuous assignment (logic always computes)

o propagation delay (computation takes time)

o timing of signals is important (when does computation have its effect)
Data structures

o size explicitly spelled out - no dynamic structures

o no pointers

Parallelism

o hardware is naturally parallel (must support multiple threads)

o assignments can occur in parallel (not just sequentially)

Autumn 2006 CSE370 - III - Working with Combinational Logic 41

Hardware description languages and
combinational logic

Modules - specification of inputs, outputs, bidirectional, and
internal signals

Continuous assignment - a gate’s output is a function of its
inputs at all times (doesn’t need to wait to be "called")

Propagation delay- concept of time and delay in input affecting
gate output

Composition - connecting modules together with wires
Hierarchy - modules encapsulate functional blocks

Autumn 2006 CSE370 - 111 - Working with Combinational Logic 42

Working with combinational logic summary

Design problems

o filling in truth tables

o incompletely specified functions

o simplifying two-level logic
Realizing two-level logic

o NAND and NOR networks

o networks of Boolean functions and their time behavior
Time behavior
Hardware description languages
Later

o combinational logic technologies

o more design case studies

Autumn 2006 CSE370 - III - Working with Combinational Logic 43

