Combinational logic

Basic logic

o Boolean algebra, proofs by re-writing, proofs by perfect induction
o logic functions, truth tables, and switches

o NOT, AND, OR, NAND, NOR, XOR, .. ., minimal set
Logic realization

o two-level logic and canonical forms

o incompletely specified functions

Simplification

o uniting theorem

o grouping of terms in Boolean functions

Alternate representations of Boolean functions
o cubes

o Karnaugh maps

Autumn 2006 CSE370 - II - Combinational Logic 1

Possible logic functions of two variables

There are 16 possible functions of 2 input variables:
o in general, there are 2**(2**n) functions of n inputs

> F

X Y] 16 possible functions (FO—F15)
0 oo o o o o o 0o o1 121 1 1 1 1 1
o 1,0 o o o 1 11 1 0 O O O 1 1 1 1
1 oo o 1 1 0o 01 12 0 O 1 12 0 O 1 1
1 i1*"o 12 0 2. 0 12 012 0 1 O 1 O 1 0 1
A N N v mix \ 1
Y notY notX
XorY X nor Y not (X and Y)
not (X or Y)

Autumn 2006 CSE370 - II - Combinational Logic 2

Cost of different logic functions

Different functions are easier or harder to implement

each has a cost associated with the number of switches needed

0 (FO) and 1 (F15): require 0 switches

X (F3) and Y (F5): require 0 switches, output is one of inputs

X' (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
X NOR Y (F4) and X NAND Y (F14): require 4 switches

X ORY (F7) and X AND Y (F1): require 6 switches

X =Y (F9) and X ® Y (F6): require 16 switches

0 0 0o 0o o0 o

o thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

Autumn 2006 CSE370 - II - Combinational Logic 3

Minimal set of functions

Can we implement all logic functions from NOT, NOR, and NAND?

o For example, implementing XandY
is the same as implementing not (X nand Y)

In fact, we can do it with only NOR or only NAND
o NOT is just a NAND or a NOR with both inputs tied together

X Y |XnorY X Y |XnandY
0 0 1 0 0 1
1 1 0 1 1 0

o and NAND and NOR are "duals",
that is, its easy to implement one using the other

XpandY = not((notX) nor (notY))
XnorY = not((notX)nand (notY))

But lets not move too fast . . .
o lets look at the mathematical foundation of logic

Autumn 2006 CSE370 - II - Combinational Logic 4

An algebraic structure

An algebraic structure consists of
o aset of elements B

binary operations { +, ¢ }

o and a unary operation {’}

o such that the following axioms hold:

O

1. the set B contains at least two elements: a, b
2. closure: a+b isinB a*b isinB
3. commutativity: a+b=b+a asb=bea
4. associativity: at+(b+c)=(@@a+hb)+c as(bec)=(ah)ec
5. identity: at+0=a a*l=a
6. distributivity: at(bec)=(a+b)e(a+c) as(b+c)=(asb)+(a-c)
7. complementarity: a+a' =1 a*a' =0
Autumn 2006 CSE370 - II - Combinational Logic 5

Boolean algebra

Boolean algebra

o B={0, 1}

o variables

o +islogical OR, ¢ is logical AND
o 'islogical NOT

All algebraic axioms hold

Autumn 2006 CSE370 - II - Combinational Logic 6

Logic functions and Boolean algebra

Any logic function that can be expressed as a truth table can
be written as an expression in Boolean algebra using the
operators: ’, +, and ¢

X Y XY X Y |[X |[XeY

(o] (0] (0] 0 0 1 0

0] 1 0] (6] 1 1 1

1 0] 0] 1 6] 6] 0

1 1 1 1 1 0 0

X Y X |Y [XeY [XeY[(XeY)+ (X =Y")

0] 0] 1 1 0] 1 1

0 1 1 (0] (0] 0 (0] ,) _ —

1 0 0 1 0 0 0 (XeY)+ (X =Y") = X=Y

1 1 0] o] 1 (6] 1
Boolean expression that is
true when the variables X
and Y have the same value

X, Y are Boolean algebra variables and false, otherwise
Autumn 2006 CSE370 - 11 - Combinational Logic

Axioms and theorems of Boolean algebra

identity

1. X+0=X 1D. Xe1=X
null

2. X+1=1 2D. X+0=0
idempotency:

3. X+X=X 3D. XeX=X
involution:

4. (X)y=X
complementarity:

5, X+X' = 5D. XX =0
commutativity:

6. X+Y=Y+X 6D. XeY=YeX

associativity:
7. X+Y)+Z=X+(Y+2) 7D. (XeY)eZ=Xe(Y*2)

Autumn 2006 CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra (cont’d)

distributivity:
8. Xe(Y+2)=(XeY)+(XeZ) 8D. X+ (Ye2Z)=(X+Y)e(X+2)

uniting:
9. XeY+XeY =X 9D. X+Y)+(X+Y)=X
absorption:
10. X+ XY =X 10D. Xe(X+Y)=X
1. (X+Y)eY=XeY 11D. (X Y)+Y=X+Y
factoring:
12.(X+Y)e(X+2)= 12D. XY+ X' ¢ Z=
XeZ+X oY X+2Z)s (X +Y)
concensus:
1I3.XeY)+(YeZ)+ (X' eZ)= 13D.(X+Y)e(Y+2)e (X' +2) =
XeY+X eZ X+Y)e (X +2)
Autumn 2006 CSE370 - II - Combinational Logic 9

Axioms and theorems of Boolean algebra (cont’d)

de Morgan’s:

14. (X+Y+..)=XeeY e, 14D. (XeYe.)=X+Y"+ ..
generalized de Morgan’s:

15. (X1, X,,....X,,0,1,+,2) = (X", X,,....X,,1,0,2,+)

establishes relationship between « and +

Autumn 2006 CSE370 - II - Combinational Logic 10

Axioms and theorems of Boolean algebra (cont’d)

Duality

o adual of a Boolean expression is derived by replacing
by +, +bye 0by 1, and 1 by 0, and leaving variables unchanged

o any theorem that can be proven is thus also proven for its dual!
o a meta-theorem (a theorem about theorems)
duality:

16. X+Y+...XeYe .

generalized duality:
17.f (X1, X5,..,X,,0,1,+,¢) < (X, X,,...,X,1,0,2,%)

Different than deMorgan’s Law
o this is a statement about theorems
o this is not a way to manipulate (re-write) expressions

Autumn 2006 CSE370 - II - Combinational Logic 11

Proving theorems (rewriting)

Using the laws of Boolean algebra:

o e.g., prove the theorem: XeY+XeY = X
distributivity (8)
complementarity (5)
identity (1D)

o e.g., prove the theorem: X+ XeY = X

identity (1D)
distributivity (8)
identity (2)
identity (1D)

Autumn 2006 CSE370 - II - Combinational Logic 12

Proving theorems (rewriting)

Using the laws of Boolean algebra:

o e.g., prove the theorem:

o e.g., prove the theorem:

distributivity (8)
complementarity (5)
identity (1D)

identity (1D)
distributivity (8)
identity (2)
identity (1D)

XeY +XeY

XeY+XeY
Xe(Y+Y)
X (1)

X

Xe(Y+Y)
X (1)

X v

X

Xel + XeY
Xe(1+Y)
Xe (1)

Xv

Autumn 2006 CSE370 - II - Combinational Logic 13
Activity
Prove the following using the laws of Boolean algebra:
0 XeY)+(YeZ)+(XeZ)= XeY+X Z
identity 1 X+0=X 1D. X1
null 2. X+1=1 2D. X+0
complementarity: 5 X+X=1 5D. XeX'=0
commutativity: 6. X+Y=Y+X 6D. XeY=YeX
associativity: 7. X+Y)+Z=X+(Y+2) 7D. (X Z=Xs+(Y*2)
distributivity: 8. Xe(Y+2Z)=(X*Y)+(X*2) 8D. X+(Y*2)=(X+Y)e(X+2)
factoring: 12.(X+Y) s (X +2)=X+Z+X+Y 12D. X » “Z=(X+2)+ (X +Y)
Autumn 2006 CSE370 - II - Combinational Logic 14

Activity

Prove the following using the laws of Boolean algebra:
0 XeY)+(Ye2)+(X*eZ)= XeY+X ¢Z

XeY)+(Ye2)+ (X =2)

identity (XeY)+ (1) s (Ye2)+(X*2)
complementarity XeY)+X+X)e(Ye2)+ (X *2)
distributivity (XeY)+(XeYeZ)+(XeYeZ)+ (X *2)
commutativity XeY)+(XeYeZ)+ (X eYeZ)+ (X *2)
factoring XeY)e(L+2)+(X2e2Z)=(1+Y)
null (XeY)e (L) + (X 2)* ()
identity XeY)+ (X e2)V

identity 1. X+0=X 1D. Xe«1=X

null 2. X+1=1 2D. X+0=0

complementarity: 5. X+X =1 5D. XeX'=0

commutativity: 6. X+Y=Y+X 6D. XeY=YeX

associativity: 7. X+Y)+Z=X+(Y+2) 7D. (X*Y)*Z=X+(Y*2)

distributivity: 8. Xe(Y+Z)=(X+Y)+(X*2) 8D. X+(Y*Z)=(X+Y)+(X+2)

factoring: 12.(X+Y) e (X +2)=XeZ+X oY 12D XY+ X ¢ Z=(X+2)+ (X +Y)

Autumn 2006 CSE370 - II - Combinational Logic 15

Proving theorems (perfect induction)

Using perfect induction (complete truth table):
o e.g., de Morgan’s:

o X Y X Y [(X+Y) XeY
(X+Y)y=X-eY 0 0 1 1
NOR is equivalent to AND 6 1 1 0
. 1 0 0 1
with inputs complemented 1 1 0 o0

L X Y X Y |[(XeYy X+Y
(X 4 Y) =X'+Y 0 0 1 1
NAND is equivalent to OR 0o 1 1 ©
with inputs complemented % (1) 8 (1)

Autumn 2006 CSE370 - II - Combinational Logic 16

A simple example: 1-bit binary adder

= Inputs: A, B, Carry-in

= Outputs: Sum, Carry-

Cin Cout S

PRPRPRPOOOO>
PRPOORFROOWW
PORPORFRORO

Autumn 2006

Cout Cin
AllA|JA]A|A
out B| BB/ BB
JHuEE
A—>
—>S
B—>
. — Cout
Cin —
CSE370 - II - Combinational Logic 17

A simple example: 1-bit binary adder

= Inputs: A, B, Carry-in

= Outputs: Sum, Carry-out

E
F

PRPRFRPFRPOOOO
PROORFROO
POFRPORORrO
PRPRPOFRPOOO

POORFRORRFRO

Autumn 2006

Cout Cin

AflA|JAJA|A

BB B

B
Lol

os)

[%2]

A—b
—>S
B—b
— Cout

Cin —

S=ABCin+ABCin"+AB Cin"+ ABCin
Cout=A'BCin+ AB' Cin+ABCin'+ ABCin

CSE370 - II - Combinational Logic 18

Apply the theorems to simplify expressions

The theorems of Boolean algebra can simplify Boolean
expressions

o e.g., full adder’s carry-out function (same rules apply to any function)

Cout = ABCin+AB Cin+ ABCin"+ ABCin

Autumn 2006 CSE370 - II - Combinational Logic 19

Apply the theorems to simplify expressions

The theorems of Boolean algebra can simplify Boolean
expressions

o e.g., full adder’s carry-out function (same rules apply to any function)

Cout A'BCin+ AB Cin+ABCin"+ ABCin

A'BCin + AB'Cin + ABCin" +[ABCin + ABCin]|
A'BCin + ABCin + AB'Cin + ABCin" + ABCin
(A+A)BCin + AB'Cin + ABCin" + ABCin

(1)) BCin + AB'Cin + ABCin" + ABCin

Autumn 2006 CSE370 - II - Combinational Logic 20

Apply the theorems to simplify expressions

The theorems of Boolean algebra can simplify Boolean
expressions

o e.g., full adder’s carry-out function (same rules apply to any function)

Cout

Autumn 2006

A’B Cin+ AB Cin+ ABCin’+ AB Cin

A'BCin + AB'Cin + ABCin’ +|ABCin + ABCin

A'BCin + ABCin + AB' Cin + ABCin" + ABCin
(A+A)BCin + AB'Cin + ABCin" + ABCin
(1)) BCin + AB’Cin + ABCin’ + ABCin
BCin + AB'Cin +ABCin' +|ABCin + ABCin
BCin + AB'Cin + ABCin + ABCin" + ABCin
BCin + A(B+B)Cin + ABCin" + ABCin
BCin + A(1)Cin + ABCin" + ABCin
+
+
+

B Cin ACin + AB (Cin’ + Cin)
B Cin ACin + AB (1)
B Cin

CSE370 - II - Combinational Logic

ACin + AB adding extra terms
creates new factoring
opportunities

21

Activity

Truth-table for a circuit that tallies the number of inputs that are 1

X1

X2 X3 T2 T1

O O O o

B B O O
B Ok O
» O O o
o r kB O

Write down Boolean expressions for T2 and T1

Autumn 2006

CSE370 - II - Combinational Logic

22

Activity

x
[
X
N
x
w
_‘
N
-
=

Tl = X1'X2' X3 + X1' X2 X3'
+ X1 X2' X3 + X1 X2 X3

= (X1’ X2' + X1 X2) X3
+ (X1’ X2 + X1 X2') X3’
= (X1 xor X2)' X3

+ (X1 xor X2) X3'

= X1 xor X2 xor X3

P P P P O O O O
r B O O Fr +» OO
P O Fr O Fr O F O
B B RBP O FP O O O
P O O Fr O Fr Pk O

T2 = X1' X2 X3 + X1 X2' X3
+ X1 X2 X3 + X1 X2 X3

= X1 (X2 X3) + X1 (X2 + X3)

Autumn 2006 CSE370 - II - Combinational Logic 23

From Boolean expressions to logic gates

— x|y
= NOT X X ~X 01
110

= AND XY XY XAY

PP OOX
R OoOPr o<

= OR X+Y XvY

RO O|X
R O O|<

Autumn 2006 CSE370 - II - Combinational Logic 24

From Boolean expressions to logic gates (cont’d)

X Y |Z
0 O 1
NAND '
1 0 1
1 1 0
X Y |Z
NOR 0 0 |1
0 1 |0
1 0 0
1 1 0
X Y |z
XOR 0O o0 |o XxorY=XY +XY
XY 0 1 |1 X or Y but not both
i 2 (1J ("inequality”, "difference")
XNOR X Y |z
X=Y 0 o0 |1 XxnorY=XY+XY
0 1 |0 X and Y are the same
i (1) (1) ("equality", "coincidence")
Autumn 2006 CSE370 - II - Combinational Logic 25

From Boolean expressions to logic gates (cont’d)

More than one way to map expressions to gates

2 eg., Z=A+B +(C+D)= (A« (B +(C+D))
T2
T1

use of 3-input gate

Autumn 2006 CSE370 - II - Combinational Logic 26

Waveform view of logic functions

Just a sideways truth table
o but note how edges don't line up exactly
o it takes time for a gate to switch its output!

time

#

s

Mot ¥

HEY

Mot (7 &)
HEY

Mot (2 +)
Ao

Mot () wor 50

Autumn 2006

L

I e —

1)

change in Y takes time to “"propagate"” through gates

CSE370 - II - Combinational Logic 27

Choosing different realizations of a function

PRPRPPRPOOOO>
PRPOORRF OO
PORPORFRORFROn

Autumn 2006

OFRrFRPORFRORFRO|IN

e

ARG

&

W

- twio-level realization

1 (we don’t count NOT gates)

=D D

- ‘multi-level realization

' " (gates with fewer inputs)

—) .. XOR gate (easier to draw
= -3 but costlier to build)
!

CSE370 - II - Combinational Logic 28

Which realization is best?

Reduce number of inputs
o literal: input variable (complemented or not)
can approximate cost of logic gate as 2 transistors per literal
why not count inverters?
o fewer literals means less transistors
smaller circuits
o fewer inputs implies faster gates
gates are smaller and thus also faster
o fan-ins (# of gate inputs) are limited in some technologies

Reduce number of gates

o fewer gates (and the packages they come in) means smaller circuits
directly influences manufacturing costs

Autumn 2006 CSE370 - II - Combinational Logic 29

Which realization is best? (cont’d)

Reduce number of levels of gates

o fewer level of gates implies reduced signal propagation delays

o minimum delay configuration typically requires more gates
wider, less deep circuits

How do we explore tradeoffs between increased circuit delay

and size?

o automated tools to generate different solutions

o logic minimization: reduce number of gates and complexity

o logic optimization: reduction while trading off against delay

Autumn 2006 CSE370 - II - Combinational Logic 30

Are all realizations equivalent?

Under the same input stimuli, the three alternative
implementations have
almost the same waveform behavior

o delays are different

o glitches (hazards) may arise — these could be bad, it depends

o variations due to differences in number of gate levels and structure
The three implementations are functionally equivalent

100 | 200
=] | e
C 1 r I 1 r -
21 T I o | A
22 T -
23 1 I 1 '—u—l—n-
Autumn 2006 CSE370 - II - Combinational Logic 31

Implementing Boolean functions

Technology independent
o canonical forms
o two-level forms
o multi-level forms

Technology choices

o packages of a few gates

o regular logic

o two-level programmable logic
o multi-level programmable logic

Autumn 2006 CSE370 - II - Combinational Logic 32

Canonical forms

Truth table is the unique signature of a Boolean function
The same truth table can have many gate realizations
Canonical forms

o standard forms for a Boolean expression

o provides a unigue algebraic signature

Autumn 2006 CSE370 - II - Combinational Logic 33

Sum-of-products canonical forms
Also known as disjunctive normal form
Also known as minterm expansion

F= 001 011 101 110 111
F= ABC + ABC + AB'C + ABC' + ABC

RRROROROM
OO\\\TI\

PRPRRPPRPOOOO>
PRPOORRFROOWm
PORPOROROD

0 F =ABC + ABC' + AB'C’

Autumn 2006 CSE370 - II - Combinational Logic 34

Sum-of-products canonical form (cont’d)

Product term (or minterm)
o ANDed product of literals — input combination for which output is true
o each variable appears exactly once, true or inverted (but not both)

A B C | minterms . .

0 0 0 | ABC mo F in canonical form:

o 0 1 |ARC mi F(A,B,C) =2=m(1,3,5,6,7)

0 1 0 ABC m2 = m’1’+ m3’+ m5 +,m6 + m7'

0 1 1 ABC m3 = A'B'C + ABC + AB'C + ABC' + ABC
1 0 0 |ABC m4 . .

1 0 1 ABC m5 canonical form = m’In,lmaI f?rm ‘ ’
1 1 0 ABC' m6 F(A, B, C) :AI:%’C+A:BC+A'BC+ABC+AE’3C

1 1 1 | aBC m7 = (A'B'+ AB + AB’ + AB)C + ABC

= (A" + A)(B' + B))C + ABC’
/ =C + ABC’
short-hand notation for =ABC' +C

minterms of 3 variables =AB+C

Autumn 2006 CSE370 - II - Combinational Logic 35

Product-of-sums canonical form

Also known as conjunctive normal form
Also known as maxterm expansion

F= 000 010 100
F= (A+B+C) (A+B +C) (AA+B+C)

PRPRRPPRPOOOO>
PRPOORRFROOWm
PORPOROROD

RRROROROM
ococoror\orm

F=(A+B+C)(A+B +C)(A+B+C)(A+B+C)(A+B+C)

Autumn 2006 CSE370 - II - Combinational Logic 36

Product-of-sums canonical form (cont’d)

Sum term (or maxterm)
o ORed sum of literals — input combination for which output is false
o each variable appears exactly once, true or inverted (but not both)

A B C | maxterms F in canonical form:

0 0 0 |A+B+C MO F(A,B,C) =TIM(0,2,4)

0 0 1 |A+B+C M1 — MO« M2 » M4

0 1 0 |A+B+C M2 = (A+B+C)(A+B +C)(A+B+C)
0 1 1 |A+B+C M3

1 0 0 [A+B+C M4 canonical form = minimal form

1 0 1 fA+B+C" M5 F(A,B,C) =(A+B+C)(A+B +C)(A+B+0C)
1 1 0 | A+B'+C M6 =(A+B+C)(A+B +0C)

1 1 1 [A+B+C M7 (A+B+C)(A+B+C)

=(A+C)(B+C)
short-hand notation for
maxterms of 3 variables

Autumn 2006 CSE370 - II - Combinational Logic 37

S-0-P, P-0-§, and de Morgan’s theorem

Sum-of-products of complement

o FF=ABC +ABC + ABC’

Apply de Morgan’s and get the product-of-sums form
o (F)Y=(ABC'+ABC +ABCY

o F=(A+B+C)(A+B'+C)(A’+B+C)

Product-of-sums of complement

o F=(A+B+C)(A+B'+C)(A'+B+C)(A'+B +C)(A"+B' + C)
Apply de Morgan’s and get the sum-of-product form

o FY=((A+B+C)A+B'+C)A'+B+C)A'+B +C)(A’+B +C"))
o F=ABC+ABC+ABC+ ABC’' + ABC

Autumn 2006 CSE370 - II - Combinational Logic 38

Four alternative two-level implementations

of F=AB + C

ViVl

/canonical sum-of-products

/minimized sum-of-products

/canonical product-of-sums

~__—minimized product-of-sums

Tl
J

Autumn 2006 CSE370 - II - Combinational Logic 39

Waveforms for the four alternatives

Waveforms are essentially identical
o except for timing hazards (glitches)

o delays almost identical (modeled as a delay per level, not type of
gate or number of inputs to gate)

C I I e
Fi I] I 1
F2 I L
FZ n n I 1
F4 I L

Autumn 2006 CSE370 - II - Combinational Logic 40

Mapping between canonical forms

Minterm to maxterm conversion

o use maxterms whose indices do not appear in minterm expansion
a e.g., F(AB,C) ==m(1,3,5,6,7) = IM(0,2,4)

Maxterm to minterm conversion

o use minterms whose indices do not appear in maxterm expansion
a e.g., F(A,B,C) =TIM(0,2,4) = =m(1,3,5,6,7)

Minterm expansion of F to minterm expansion of F’

o use minterms whose indices do not appear

a e.g., F(AB,C)==m(1,3,5,6,7) F'(A,B,C) = 2m(0,2,4)
Maxterm expansion of F to maxterm expansion of F’

o use maxterms whose indices do not appear

a e.g., F(A,B,C) = TIM(0,2,4) F'(A,B,C) = [IM(1,3,5,6,7)

Autumn 2006 CSE370 - II - Combinational Logic 41

Incompleteley specified functions

Example: binary coded decimal increment by 1

o BCD digits encode the decimal digits 0 — 9
in the bit patterns 0000 — 1001

cC D l|WwW z

’ don’t care (DC) set of W ‘

these inputs patterns should

never be encountered in practice

— "don’t care" about output values
in these cases — might be useful

in minimization

PRPRPRPRPPPPRPOO0OO0OO0OO0OOOO|>
PRPRRPRPOOOORRRFPROOOOW

X X X XX OOQRFRRFRPRFPFOOO|X
XX X X X OOONRRFROOR| O

PRPOOFRPFRPROOFRPRFRPROORFRPFROO
POFRPROFRPROFRPROFRPROFRPRORFRORFrRO

1
0
1
0
X
X
X
X
X
X

Autumn 2006 CSE370 - II - Combinational Logic 42

Notation for incompletely specified functions

Don’t cares and canonical forms

o so far, only represented on-set

o also represent don't-care-set

o need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:

o Z=m0+m2+md+m6+m8+d10 + d1l + d12 + d13 + d14 + d15
2 Z=3[m(0,2,4,6,8) + d(10,11,12,13,14,15)]
2 Z=M1eM3+M5eM7eM9e+D10+ D11+ D12« D13+ D14 « D15
o Z=T1[M(1,3,5,7,9) » D(10,11,12,13,14,15)]
Autumn 2006 CSE370 - II - Combinational Logic 43

Simplification of two-level combinational logic

Finding a minimal sum of products or product of sums realization
o exploit don’t care information in the process

Algebraic simplification

o not an algorithmic/systematic procedure

o how do you know when the minimum realization has been found?
Computer-aided design tools

o precise solutions require very long computation times, especially for
functions with many inputs (> 10)

o heuristic methods employed — "educated guesses" to reduce amount of
computation and yield good if not best solutions

Hand methods still relevant
o to understand automatic tools and their strengths and weaknesses
o ability to check results (on small examples)

Autumn 2006 CSE370 - II - Combinational Logic 44

The uniting theorem

Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

o find two element subsets of the ON-set where only one variable
changes its value — this single varying variable can be eliminated
and a single product term used to represent both elements

F=AB+AB = (A+A)B’' =B’

A B |F

— B has the same value in both on-set rows
Co0 0 [1D ; , L

— B remains, actually B’ because B is 0 in both cases

0O 1 |0

< 1 0 1 > A has a different value in the two rows
1 1 lo — A is eliminated
Autumn 2006 CSE370 - II - Combinational Logic 45

Boolean cubes

Visual technique for indentifying when the uniting theorem
can be applied

n input variables = n-dimensional "cube”

01 11
0 1 v
1-cube O——0O 2-cube
X 00 10
X
111
3-cube Y 101
000 X

Autumn 2006 CSE370 - II - Combinational Logic 46

Mapping truth tables onto Boolean cubes

Uniting theorem combines two "faces" of a cube
into a larger "face"

Example:

E two faces of size 0 (nodes)

1 combine into a face of size 1(line)
01

00 10

A varies within face, B does not
this face represents the literal B'

ON-set = solid nodes
OFF-set = empty nodes
DC-set = x'd nodes

Autumn 2006 CSE370 - II - Combinational Logic 47

Three variable example

Binary full-adder carry-out logic

(A'+A)BCin

=]
o
c
—

A(B+B')Cin

PFRrRrRROOOOR
PRrOORROOD
rororoOroln
PFPPRrOPRPOOOD

the on-set is completely covered by

the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Cout = BCin+AB+ACin

Autumn 2006 CSE370 - II - Combinational Logic 48

Higher dimensional cubes

Sub-cubes of higher dimension than 2

F(A,B,C) = =m(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
r.e., 3 dimensions — 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Autumn 2006 CSE370 - II - Combinational Logic 49

m-dimensional cubes in 2 n-dimensional
Boolean space

In a 3-cube (three variables):

o a0-cube, i.e., a single node, yields a term in 3 literals

o a l-cube, i.e., aline of two nodes, yields a term in 2 literals

o a2-cube, i.e., a plane of four nodes, yields a term in 1 literal

o a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
In general,

o an m-subcube within an n-cube (m < n) yields a term
with n — m literals

Autumn 2006 CSE370 - II - Combinational Logic 50

Karnaugh maps

Flat map of Boolean cube
o wrap—around at edges
o hard to draw and visualize for more than 4 dimensions
o virtually impossible for more than 6 dimensions
Alternative to truth-tables to help visualize adjacencies
o guide to applying the uniting theorem

o on-set elements with only one variable changing value are
adjacent unlike the situation in a linear truth-table

A
B
0
o 2
11 0] 0
1 3
Autumn 2006 CSE370 - II - Combinational Logic 51

Karnaugh maps (cont’d)

Numbering scheme based on Gray—code
o e.g., 00,01, 11, 10
o only a single bit changes in code for adjacent map cells

AB A
C 00 01 11 10
0 A
o 2 6 4
0 4 12 |8
cl|l
1 3 7 5
—s 1 5 13 |9 D
A 3 7 15 |11
C
o B 6 4 2 6 14 |10
C 13 = 1101= ABC'D
1 3 7 5

Autumn 2006 CSE370 - II - Combinational Logic 52

Adjacencies in Karnaugh maps

= Wrap from first to last column
= Wrap top row to bottom row

6pe» 010(110| 100

C| oo1| 011| 112| 101

Autumn 2006 CSE370 - II - Combinational Logic 53

Karnaugh map examples

 ’ 1] 1

= Cout= Bl o| o
= f(A,B,C) = m(0,4,5,7

A

Cinfo| 1] 1] 1

Autumn 2006 CSE370 - II - Combinational Logic 54

‘ More Karnaugh map examples

G(AB,C)=A

A
E o]0 Q_ F(A,B,C) = Xm(0,4,5,7) =AC +BC’
D

' simply replace 1's with 0's and vice versa
'(A,B,C) =2 m(1,2,3,6)=BC’ + A'C

Autumn 2006 CSE370 - II - Combinational Logic 55

Karnaugh map: 4-variable example

« F(A,B,C,D) =m(0,2,3,5,6,7,8,10,11,14,15)

F=C+ABD+BD

of 1]l o] o
D
—
1111}
C
G]llllj
1
T

find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)

Autumn 2006 CSE370 - II - Combinational Logic 56

Karnaugh maps: don’t cares

f(A,B,C,D) =~ m(1,3,5,7,9) + d(6,12,13)
o without don't cares
f= AD + BCD

Autumn 2006 CSE370 - II - Combinational Logic

Karnaugh maps: don’t cares (cont’d)

f(A,B,C,D) = = m(1,3,5,7,9) + d(6,12,13)

o f=AD+B'CD without don't cares
o f=AD+CD with don't cares
A .
ol ol x| o by using don't care as a "1"
/ a 2-cube can be formed
"[1__1 x| 1) rather than a 1-cube to cover
D this node
1| 1)fo] o
C don't cares can be treated as
0| xX|[0]O0 1s or Os
depending on which is more
advantageous

Autumn 2006 CSE370 - II - Combinational Logic

Activity

= Minimize the function F =X m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

D
X 1 1 0
C
1 X 1 0
Autumn 2006 CSE370 - II - Combinational Logic 59
Activity

= Minimize the function F =X m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

| 1 A
J— A » :‘@ 0 X E:
,@ o |[x @, F:?}S\C\: oo x| x|y
0 0 (X XJ D BC +
/x_() 1) o },;BE';\JE) N c /% Gj -
c x| 1) o
@Q:l 0 BCD L N
o ° IBREIE
F=BC + A'B'D'+ B'CD’ 0 0 X[| x b
F=AC+AB+BCD «~— (x] 1) 1] o
| X)

|6

Autumn 2006 CSE370 - II - Combinational Logic 60

L] 0

Combinational logic summary

Logic functions, truth tables, and switches

o NOT, AND, OR, NAND, NOR, XOR, .. ., minimal set
Axioms and theorems of Boolean algebra

o proofs by re-writing and perfect induction
Gate logic

o networks of Boolean functions and their time behavior
Canonical forms

o two-level and incompletely specified functions
Simplification

o astart at understanding two-level simplification
Later
automation of simplification
multi-level logic
time behavior
hardware description languages
design case studies

0O 0 o0 o

Autumn 2006 CSE370 - II - Combinational Logic

61

