Combinational logic

- Basic logic
- Boolean algebra, proofs by re-writing, proofs by perfect induction
- logic functions, truth tables, and switches
- NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Logic realization
- two-level logic and canonical forms
- incompletely specified functions
- Simplification
- uniting theorem
- grouping of terms in Boolean functions
- Alternate representations of Boolean functions
- cubes
- Karnaugh maps

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
- in general, there are $2^{\star *}\left(2^{* *} n\right)$ functions of n inputs

Cost of different logic functions

- Different functions are easier or harder to implement
- each has a cost associated with the number of switches needed
- 0 (F0) and 1 (F15): require 0 switches
- $\mathrm{X}(\mathrm{F} 3)$ and Y (F5): require 0 switches, output is one of inputs
- X^{\prime} (F12) and Y^{\prime} (F10): require 2 switches for "inverter" or NOT-gate
- X NOR Y (F4) and X NAND Y (F14): require 4 switches
- X OR Y (F7) and X AND Y (F1): require 6 switches
- $X=Y$ (F9) and $X \oplus Y$ (F6): require 16 switches
- thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
- For example, implementing X and Y is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
- NOT is just a NAND or a NOR with both inputs tied together

- and NAND and NOR are "duals", that is, its easy to implement one using the other

$$
\begin{array}{ll}
X \text { nand } Y & \equiv \text { not }((\operatorname{not} X) \text { nor }(\text { not } Y)) \\
X \underline{\text { nor } Y} Y & \equiv \text { not }((\underline{\text { not }} X) \text { nand }(\text { not } Y))
\end{array}
$$

- But lets not move too fast
- lets look at the mathematical foundation of logic

An algebraic structure

- An algebraic structure consists of
- a set of elements B
- binary operations $\{+, \bullet\}$
- and a unary operation \{ ' \}
- such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: $\quad a+b$ is in $B \quad a \cdot b$ is in B
3. commutativity: $\quad a+b=b+a$
4. associativity: $\quad a+(b+c)=(a+b)+c$
$a \cdot b=b \cdot a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
5. identity:
$a+0=a$
$a \cdot 1=a$
6. distributivity: $\quad a+(b \cdot c)=(a+b) \cdot(a+c)$
7. complementarity: $a+a^{\prime}=1$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$

Boolean algebra

- Boolean algebra
- $B=\{0,1\}$
- variables
- + is logical OR, • is logical AND
- ' is logical NOT
- All algebraic axioms hold

Logic functions and Boolean algebra

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •

\mathbf{X}	\mathbf{Y}	\mathbf{X}^{\prime}	$\mathbf{X} \cdot \mathbf{Y}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$

Boolean expression that is true when the variables X and Y have the same value
X, Y are Boolean algebra variables
and false, otherwise

Axioms and theorems of Boolean algebra

- identity

1. $x+0=x$

1D. $x \cdot 1=x$

- null

2. $X+1=1$

2D. $x \cdot 0=0$

- idempotency:

3. $X+X=X$

3D. $X \cdot X=X$

- involution:

4. $\left(X^{\prime}\right)^{\prime}=X$

- complementarity:

5. $X+X^{\prime}=1$

5D. $X \cdot X^{\prime}=0$

- commutativity:

6. $X+Y=Y+X \quad$ 6D. $X \cdot Y=Y \cdot X$

- associativity:

7. $(X+Y)+Z=X+(Y+Z) \quad 7 D .(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$

Axioms and theorems of Boolean algebra (cont'd)

- distributivity:

8. $X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z) 8 D . \quad X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$

- uniting:

9. $X \cdot Y+X \cdot Y^{\prime}=X \quad$ 9D. $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$

- absorption:

10. $X+X \cdot Y=X \quad$ 10D. $X \cdot(X+Y)=X$
11. $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y \quad$ 11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$

- factoring:

12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=$ $X \cdot Z+X \cdot Y$

12D. $X \cdot Y+X \cdot Z=$
$(X+Z) \cdot\left(X^{\prime}+Y\right)$

- concensus:

13. $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=13 D .(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$ $X \cdot Y+X^{\prime} \cdot Z$

$$
(X+Y) \cdot\left(X^{\prime}+Z\right)
$$

Winter 2005

Axioms and theorems of Boolean algebra (cont'd)

- de Morgan's:

14. $(X+Y+\ldots)^{\prime}=X^{\prime} \cdot Y^{\prime} \cdot \ldots \quad$ 14D. $(X \cdot Y \cdot \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$

- generalized de Morgan's:

15. $\mathrm{f}^{\prime}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}, 0,1,+, \bullet\right)=\mathrm{f}\left(\mathrm{X}_{1}{ }^{\prime}, \mathrm{X}_{2}^{\prime}, \ldots, \mathrm{X}_{\mathrm{n}}{ }^{\prime}, 1,0, \bullet,+\right)$

- establishes relationship between • and +

Axioms and theorems of Boolean algebra (cont'd)

- Duality
- a dual of a Boolean expression is derived by replacing
\bullet by,++ by $\bullet, 0$ by 1 , and 1 by 0 , and leaving variables unchanged
- any theorem that can be proven is thus also proven for its dual!
- a meta-theorem (a theorem about theorems)
- duality:

16. $X+Y+\ldots \Leftrightarrow X \bullet Y \bullet \ldots$
generalized duality:
17. $f\left(X_{1}, X_{2}, \ldots, X_{n}, 0,1,+, \bullet\right) \Leftrightarrow f\left(X_{1}, X_{2}, \ldots, X_{n}, 1,0, \bullet,+\right)$

- Different than deMorgan's Law
- this is a statement about theorems
- this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

- Using the laws of Boolean algebra:
- e.g., prove the theorem: $X \cdot Y+X \cdot Y^{\prime}=X$

distributivity (8)	$X \cdot Y+X \cdot Y^{\prime}$	$=X \cdot\left(Y+Y^{\prime}\right)$
complementarity (5)	$X \cdot\left(Y+Y^{\prime}\right)$	$=X \cdot(1)$
identity (1D)	$X \cdot(1)$	$=X \checkmark$

- e.g., prove the theorem: $X+X \cdot Y=X$

identity (1D)	$X+X \cdot Y$	$=X \cdot 1+X \cdot Y$
distributivity (8)	$X \cdot 1+X \cdot Y$	$=X \cdot(1+Y)$
identity (2)	$X \cdot(1+Y)$	$=X \cdot(1)$
identity (1D)	$X \cdot(1)$	$=X \checkmark$

Activity

- Prove the following using the laws of Boolean algebra:
- $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=X \cdot Y+X^{\prime} \cdot Z$

identity	1. $\mathrm{X}+0=\mathrm{X}$	1D. $X \cdot 1=x$
null	2. $x+1=1$	2D. $x \cdot 0=0$
idempotency:	3. $x+x=x$	3D. $x \cdot x=x$
involution:	4. $\left(X^{\prime}\right)^{\prime}=X$	
complementarity:	5. $X+X^{\prime}=1$	5D. $X \cdot X^{\prime}=0$
commutativity:	6. $X+Y=Y+X$	6D. $X \cdot Y=Y \cdot X$
associativity:	7. $(X+Y)+Z=X+(Y+Z)$	7D. $(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$
distributivity:	8. $X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$	8D. $\mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})$
uniting:	9. $X \cdot Y+X \cdot Y^{\prime}=X$	9D. $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$
absorption:	10. $X+X \cdot Y=X$	10D. $X \cdot(X+Y)=X$
	11. $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y$	11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$
factoring:	12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=X \cdot Z+X^{\prime} \cdot Y$	12D. $\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Z}=(\mathrm{X}+\mathrm{Z}) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Y}\right)$
concensus:	13. $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=X \cdot Y+X \cdot Z$	13D. $(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=(X+Y) \cdot\left(X^{\prime}+Z\right)$
de Morgan's:	14. $(X+Y+\ldots)^{\prime}=X^{\prime} \cdot Y^{\prime} \cdot$.	14D. $(X \cdot Y \cdot \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$
generalized de Morgan's:	15. $\mathrm{f}^{\prime}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}, 0,1,+, \cdot)=\mathrm{f}\left(\mathrm{X} 1^{\prime}, \mathrm{X} 2^{\prime}, \ldots, \mathrm{Xn},{ }^{\prime}, 1\right.$,	

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
- e.g., de Morgan's:
$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$
NOR is equivalent to AND with inputs complemented
$(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}$
NAND is equivalent to OR with inputs complemented

X	Y	X^{\prime}	Y^{\prime}	$(X \cdot Y)^{\prime}$	$X^{\prime}+Y^{\prime}$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

A	B	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
& S=A^{\prime} B^{\prime} C \text { in }+A^{\prime} B C \text { Cin' }+A B^{\prime} C i n^{\prime}+A B C \text { in } \\
& \text { Cout }=A^{\prime} B C \text { in }+A B^{\prime} C i n+A B C n^{\prime}+A B C \text { in }
\end{aligned}
$$

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify Boolean expressions
- e.g., full adder's carry-out function (same rules apply to any function)

$$
\begin{aligned}
\text { Cout } & =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n \prime+A B C i n \\
& =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n \prime+A B C i n+A B C i n \\
& =A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n+A B C i n \\
& =\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n+A B C i n \\
& =(1) B C i n+A B^{\prime} C i n+A B C i n+A B C i n \\
& =B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n \\
& =B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n \\
& =B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n+A B C i n \\
& =B C i n+A(1) C i n+A B C i n+A B C i n \\
& =B C i n+A C i+A B(C i n \prime+C i n) \\
& =B C i n+A C i n+A B(1)
\end{aligned}
$$

$$
=\mathrm{BCin}+\mathrm{ACin}+\mathrm{AB}
$$

Activity

- Fill in the truth-table for a circuit that checks that determines a tally of the number of inputs that are 1

x1	x2	x3	X4	T4	T2	T1
$\mathbf{0}$						
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$

- Write down Boolean expressions for T4, T2 and T1

Activity

From Boolean expressions to logic gates

- NOT $\mathrm{X} \quad \overline{\mathrm{x}} \quad \sim \mathrm{x}$

X	Y
0	$\frac{1}{1}$
1	0

- AND $X \cdot Y$ KY $X \wedge Y$

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

- OR $X+Y \quad X \vee Y$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

From Boolean expressions to logic gates (cont'd)

- WAND

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

- NOR

- XOR $X \oplus Y$

$X \underline{X o r} Y=X Y^{\prime}+X^{\prime} Y$
X or Y but not both ("inequality", "difference")
- XNOR $X=Y$

$X \underline{\text { nor }} Y=X Y+X^{\prime} Y^{\prime}$ X and Y are the same ("equality", "coincidence")

From Boolean expressions to logic gates (cont'd)

- More than one way to map expressions to gates
- e.g., $Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot\left(B^{\prime} \cdot(C+D)\right)\right)$

Waveform view of logic functions

- Just a sideways truth table
- but note how edges don't line up exactly
- it takes time for a gate to switch its output!

Choosing different realizations of a function

	B	B	C
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Which realization is best?

- Reduce number of inputs
- literal: input variable (complemented or not)
- can approximate cost of logic gate as 2 transitors per literal
- why not count inverters?
- fewer literals means less transistors
- smaller circuits
- fewer inputs implies faster gates
- gates are smaller and thus also faster
- fan-ins (\# of gate inputs) are limited in some technologies
- Reduce number of gates
- fewer gates (and the packages they come in) means smaller circuits
- directly influences manufacturing costs

Which is the best realization? (cont'd)

- Reduce number of levels of gates
- fewer level of gates implies reduced signal propagation delays
- minimum delay configuration typically requires more gates
- wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
- automated tools to generate different solutions
- logic minimization: reduce number of gates and complexity
- logic optimization: reduction while trading off against delay

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have
almost the same waveform behavior
- delays are different
- glitches (hazards) may arise - these could be bad, it depends
- variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent

Implementing Boolean functions

- Technology independent
- canonical forms
- two-level forms
- multi-level forms
- Technology choices
- packages of a few gates
- regular logic
- two-level programmable logic
- multi-level programmable logic

Canonical forms

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- Canonical forms
- standard forms for a Boolean expression
- provides a unique algebraic signature

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

Sum-of-products canonical form (cont'd)

- Product term (or minterm)
- ANDed product of literals - input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

A	B	C	minterms	
0	0	0	$A^{\prime} B^{\prime} C^{\prime}$	m0
0	0	1	$A^{\prime \prime} B^{\prime} \mathrm{C}$	m1
0	1	0	$A^{\prime} \mathrm{BC}^{\prime}$	m2
0	1	1	$A^{\prime} \mathrm{B}^{\prime}$	m3
1	0	0	$A^{\prime} B^{\prime}{ }^{\prime}$	m4
1	0	1	$A B^{\prime} C$	m5
1	1	0	$A^{\prime} B^{\prime}$	m6
1	1	1	ABC	m7

short-hand notation for minterms of 3 variables
F in canonical form:
$F(A, B, C)=\Sigma m(1,3,5,6,7)$
$=m 1+m 3+m 5+m 6+m 7$
$=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$
canonical form \neq minimal form
$F(A, B, C)=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime}$

$$
=\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime}
$$

$$
=\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime}
$$

$$
=C+A B C^{\prime}
$$

$$
=A B C^{\prime}+C
$$

$$
=A B+C
$$

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

Product-of-sums canonical form (cont'd)

- Sum term (or maxterm)
- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms		F in canonical form:	
0	0	0	A+B+C	M0		
0	0	1	$A+B+C^{\prime}$	M1		$=\mathrm{M} 0 \cdot \mathrm{M} 2 \cdot \mathrm{M} 4$
0	1	0	$\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}$	M2		$=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
0	1	1	$\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$	M3		
1	0	0	$\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}$	M4	canonical form \neq minimal form	
1	0	1	$A^{\prime}+B+C^{\prime}$	M5	F(A, B, C)	$=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
1	1	0	$\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}$	M6		$=(A+B+C)\left(A+B^{\prime}+C\right)$
1	1	1	$\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$			$\begin{aligned} & (A+B+C)\left(A^{\prime}+B+C\right) \\ = & (A+C)(B+C) \end{aligned}$

S-o-P, P-o-S, and de Morgan's theorem

- Sum-of-products
- $F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
- Apply de Morgan's
- $\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
- $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
- Product-of-sums
- $F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$
- Apply de Morgan's
- ($\left.F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$
- $F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

Four alternative two-level implementations of $F=A B+C$

Waveforms for the four alternatives

- Waveforms are essentially identical
- except for timing hazards (glitches)
- delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

Mapping between canonical forms

- Minterm to maxterm conversion
- use maxterms whose indices do not appear in minterm expansion
- e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7)=\Pi M(0,2,4)$
- Maxterm to minterm conversion
- use minterms whose indices do not appear in maxterm expansion
- e.g., $F(A, B, C)=\Pi M(0,2,4)=\Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F^{\prime}
- use minterms whose indices do not appear
- e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7) \quad F^{\prime}(A, B, C)=\Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F^{\prime}
- use maxterms whose indices do not appear
- e.g., $F(A, B, C)=\Pi M(0,2,4) \quad F^{\prime}(A, B, C)=\Pi M(1,3,5,6,7)$

Incompleteley specified functions

- Example: binary coded decimal increment by 1
- BCD digits encode the decimal digits $0-9$
in the bit patterns 0000-1001

Notation for incompletely specified functions

- Don't cares and canonical forms
- so far, only represented on-set
- also represent don't-care-set
- need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
- $\mathrm{Z}=\mathrm{m} 0+\mathrm{m} 2+\mathrm{m} 4+\mathrm{m} 6+\mathrm{m} 8+\mathrm{d} 10+\mathrm{d} 11+\mathrm{d} 12+\mathrm{d} 13+\mathrm{d} 14+\mathrm{d} 15$
- $Z=\Sigma[m(0,2,4,6,8)+d(10,11,12,13,14,15)]$
- Z $=$ M1 •M3•M5•M7•M9•D10•D11•D12•D13•D14•D15
- $Z=\Pi[M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
- exploit don't care information in the process
- Algebraic simplification
- not an algorithmic/systematic procedure
- how do you know when the minimum realization has been found?
- Computer-aided design tools
- precise solutions require very long computation times, especially for functions with many inputs (> 10)
- heuristic methods employed - "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
- to understand automatic tools and their strengths and weaknesses
- ability to check results (on small examples)

The uniting theorem

- Key tool to simplification: $A\left(B^{\prime}+B\right)=A$
- Essence of simplification of two-level logic
- find two element subsets of the ON-set where only one variable changes its value - this single varying variable can be eliminated and a single product term used to represent both elements

$$
F=A^{\prime} B^{\prime}+A B^{\prime}=\left(A^{\prime}+A\right) B^{\prime}=B^{\prime}
$$

Boolean cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables $=\mathrm{n}$-dimensional "cube"

1-cube

Winter 2005

Mapping truth tables onto Boolean cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

ON-set = solid nodes
OFF-set = empty nodes
DC-set $=\times$ 'd nodes

Three variable example

- Binary full-adder carry-out logic

A	B	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

$$
\text { Cout }=B C i n+A B+A C i n
$$

Higher dimensional cubes

- Sub-cubes of higher dimension than 2
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(4,5,6,7)$
on-set forms a square
i.e., a cube of dimension 2
represents an expression in one variable
i.e., 3 dimensions - 2 dimensions

m-dimensional cubes in a n -dimensional Boolean space

- In a 3-cube (three variables):
a a 0 -cube, i.e., a single node, yields a term in 3 literals
- a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
- a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
- a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
- an m-subcube within an n-cube ($\mathrm{m}<\mathrm{n}$) yields a term with $\mathrm{n}-\mathrm{m}$ literals

Karnaugh maps

- Flat map of Boolean cube
- wrap-around at edges
- hard to draw and visualize for more than 4 dimensions
- virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
- guide to applying the uniting theorem
- on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

Karnaugh maps (cont'd)

- Numbering scheme based on Gray-code
- e.g., 00, 01, 11, 10
- only a single bit changes in code for adjacent map cells

$13=1101=A B C^{\prime} D$

Winter 2005

Adjacencies in Karnaugh maps

- Wrap from first to last column
- Wrap top row to bottom row

More Karnaugh map examples

F' simply replace 1's with 0's and vice versa $F^{\prime}(A, B, C)=\sum m(1,2,3,6)=B C^{\prime}+A^{\prime} C$

Karnaugh map: 4-variable example

- $F(A, B, C, D)=\Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
$F=C+A^{\prime} B D+B^{\prime} D^{\prime}$

find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh maps: don't cares

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
- without don't cares

$$
=f=A^{\prime} D+B^{\prime} C^{\prime} D
$$

Karnaugh maps: don't cares (cont'd)

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
- $f=A^{\prime} D+B^{\prime} C^{\prime} D \quad$ without don't cares
- $f=A^{\prime} D+C^{\prime} D \quad$ with don't cares

by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node
don't cares can be treated as 1s or 0s
depending on which is more advantageous

Winter 2005 CSE370 - II - Combinational Logic

Activity

- Minimize the function $F=\Sigma m(0,2,7,8,14,15)+d(3,6,9,12,13)$

Combinational logic summary

- Logic functions, truth tables, and switches
- NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
- proofs by re-writing and perfect induction
- Gate logic
- networks of Boolean functions and their time behavior
- Canonical forms
- two-level and incompletely specified functions
- Simplification
- a start at understanding two-level simplification
- Later
- automation of simplification
- multi-level logic
- time behavior
- hardware description languages
- design case studies

