Combinational logic

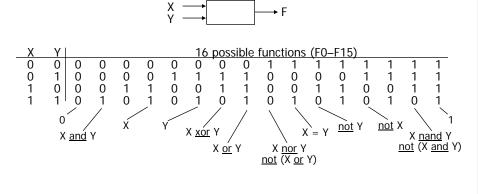
- Basic logic
 - Boolean algebra, proofs by re-writing, proofs by perfect induction
 - logic functions, truth tables, and switches
 - □ NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Logic realization
 - two-level logic and canonical forms
 - incompletely specified functions
- Simplification
 - uniting theorem
 - grouping of terms in Boolean functions
- Alternate representations of Boolean functions
 - cubes
 - Karnaugh maps

Winter 2005

CSE370 - II - Combinational Logic

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - □ in general, there are 2**(2**n) functions of n inputs



Winter 2005

CSE370 - II - Combinational Logic

Cost of different logic functions

- Different functions are easier or harder to implement
 - each has a cost associated with the number of switches needed
 - □ 0 (F0) and 1 (F15): require 0 switches
 - X (F3) and Y (F5): require 0 switches, output is one of inputs
 - □ X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
 - □ X NOR Y (F4) and X NAND Y (F14): require 4 switches
 - X OR Y (F7) and X AND Y (F1): require 6 switches
 - □ X = Y (F9) and X ⊕ Y (F6): require 16 switches
 - thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

Winter 2005

CSE370 - II - Combinational Logic

2

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - For example, implementing X and Y is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
 - NOT is just a NAND or a NOR with both inputs tied together

Χ	Υ	X nor Y	Χ	Υ	X nand Y
0	0	1	0	0	1
1	1	0	1	1	0

 and NAND and NOR are "duals", that is, its easy to implement one using the other

$$X \underline{\text{nand}} Y \equiv \underline{\text{not}} ((\underline{\text{not}} X) \underline{\text{nor}} (\underline{\text{not}} Y))$$

 $X \underline{\text{nor}} Y \equiv \underline{\text{not}} ((\underline{\text{not}} X) \underline{\text{nand}} (\underline{\text{not}} Y))$

- But lets not move too fast . . .
 - lets look at the mathematical foundation of logic

Winter 2005

CSE370 - II - Combinational Logic

An algebraic structure

- An algebraic structure consists of
 - a set of elements B
 - □ binary operations { + , }
 - and a unary operation { '}
 - such that the following axioms hold:
 - 1. the set B contains at least two elements: a, b

```
2. closure:
              a + b is in B
                                                 a • b is in B
3. commutativity: a + b = b + a
                                                a \cdot b = b \cdot a
```

- 4. associativity: a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ 5. identity: a + 0 = a $a \cdot 1 = a$ $6. distributivity: a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

- 7. complementarity: a + a' = 1a • a' = 0

Winter 2005

CSE370 - II - Combinational Logic

Boolean algebra

- Boolean algebra
 - $B = \{0, 1\}$
 - variables
 - □ + is logical OR, is logical AND
 - 'is logical NOT
- All algebraic axioms hold

Logic functions and Boolean algebra

Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •

Х	Υ	X • Y
0	0	0
0	1	0
1	0	0
1	1	1

Х	Υ	X′	X′ • Y
0	0	1	0
Ō	1	1	1
1	0	0	0
1	1	0	0

Χ	Υ	X′	Y′	X • Y	X' • Y'	(X	• Y) + (X' • Y')
0	0	1	1	0	1 4	1	
0	1	1	0	0	0 0	0	() () ()
1	0	0	1	0	0	0	(X•Y)+(
1	1	0	0	0 0 0 1	0	1	

 $(X \cdot Y) + (X' \cdot Y') \equiv X = Y$

Boolean expression that is true when the variables X and Y have the same value and false, otherwise

X, Y are Boolean algebra variables

Winter 2005

CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra

identity

1.
$$X + 0 = X$$

1D. X • 1 = X

null

2.
$$X + 1 = 1$$

2D. $X \cdot 0 = 0$

idempotency:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

involution:

4.
$$(X')' = X$$

complementarity:

5.
$$X + X' = 1$$

5D.
$$X \cdot X' = 0$$

commutativity:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

associativity:

7.
$$(X + Y) + Z = X + (Y + Z)$$
 7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

7D.
$$(X \bullet Y) \bullet Z = X \bullet (Y \bullet Z)$$

CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra (cont'd)

distributivity:

8.
$$X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$$
 8D. $X + (Y \bullet Z) = (X + Y) \bullet (X + Z)$

uniting:

9.
$$X \bullet Y + X \bullet Y' = X$$

9D.
$$(X + Y) \cdot (X + Y') = X$$

absorption:

10.
$$X + X \cdot Y = X$$

10D.
$$X \cdot (X + Y) = X$$

11.
$$(X + Y') \cdot Y = X \cdot Y$$

$$(X + Y') \cdot Y = X \cdot Y$$

11D.
$$(X \bullet Y') + Y = X + Y$$

factoring:

12.
$$(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$$

12D.
$$X \cdot Y + X' \cdot Z =$$

 $(X + Z) \cdot (X' + Y)$

concensus:

13.
$$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$$

Winter 2005

CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra (cont'd)

de Morgan's:

14.
$$(X + Y + ...)' = X' \cdot Y' \cdot ...$$
 14D. $(X \cdot Y \cdot ...)' = X' + Y' + ...$

generalized de Morgan's:

15.
$$f'(X_1, X_2, ..., X_n, 0, 1, +, \bullet) = f(X_1', X_2', ..., X_n', 1, 0, \bullet, +)$$

establishes relationship between • and +

Axioms and theorems of Boolean algebra (cont'd)

- Duality
 - a dual of a Boolean expression is derived by replacing
 by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 - any theorem that can be proven is thus also proven for its dual!
 - a meta-theorem (a theorem about theorems)
- duality:

generalized duality:

17. f
$$(X_1, X_2, ..., X_n, 0, 1, +, \bullet) \Leftrightarrow f(X_1, X_2, ..., X_n, 1, 0, \bullet, +)$$

- Different than deMorgan's Law
 - this is a statement about theorems
 - this is not a way to manipulate (re-write) expressions

Winter 2005

CSE370 - II - Combinational Logic

11

Proving theorems (rewriting)

- Using the laws of Boolean algebra:
 - e.g., prove the theorem: $X \cdot Y + X \cdot Y' = X$

distributivity (8) $X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$ complementarity (5) $X \cdot (Y + Y') = X \cdot (1)$ identity (1D) $X \cdot (1) = X \checkmark$

 \Box e.g., prove the theorem: $X + X \bullet Y = X$

Winter 2005

CSE370 - II - Combinational Logic

Activity

Prove the following using the laws of Boolean algebra:

$$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$$

Winter 2005

CSE370 - II - Combinational Logic

12

Proving theorems (perfect induction)

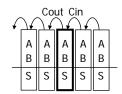
- Using perfect induction (complete truth table):
 - e.g., de Morgan's:

Winter 2005

CSE370 - II - Combinational Logic

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out



Α	В	Cin	Cout	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

S = A' B' Cin + A' B Cin' + A B' Cin' + A B CinCout = A' B Cin + A B' Cin + A B Cin' + A B Cin

Winter 2005

CSE370 - II - Combinational Logic

15

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify Boolean expressions
 - e.g., full adder's carry-out function (same rules apply to any function)

```
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin

= (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin

= (1) B Cin + A B' Cin + A B Cin' + A B Cin

= B Cin + A B' Cin + A B Cin' + A B Cin'

= B Cin + A B' Cin + A B Cin' + A B Cin'

= B Cin + A (B' + B) Cin + A B Cin' + A B Cin

= B Cin + A (1) Cin + A B Cin' + A B Cin

= B Cin + A Cin + A B (Cin' + Cin)

= B Cin + A Cin + A B (1)

= B Cin + A Cin + A B (1)

= B Cin + A Cin + A B
```

Winter 2005

CSE370 - II - Combinational Logic

10

opportunities

Activity

 Fill in the truth-table for a circuit that checks that determines a tally of the number of inputs that are 1

X1	X2	Х3	X4	T4	T2	T1
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	1	0

Write down Boolean expressions for T4, T2 and T1

Winter 2005

CSE370 - II - Combinational Logic

17

Activity

Winter 2005

CSE370 - II - Combinational Logic

From Boolean expressions to logic gates

Winter 2005

CSE370 - II - Combinational Logic

10

From Boolean expressions to logic gates (cont'd)

$$X \underline{xor} Y = X Y' + X' Y$$

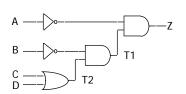
 $X \text{ or } Y \text{ but not both}$
("inequality", "difference")

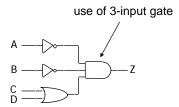
Winter 2005

CSE370 - II - Combinational Logi

From Boolean expressions to logic gates (cont'd)

- More than one way to map expressions to gates
 - e.g., $Z = A' \cdot B' \cdot (C + D) = (A' \cdot (B' \cdot (C + D)))$ $\frac{T2}{T1}$





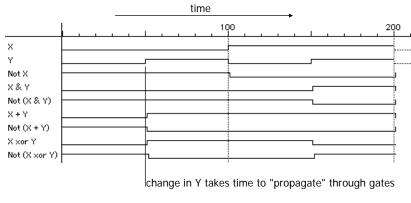
Winter 2005

CSE370 - II - Combinational Logic

21

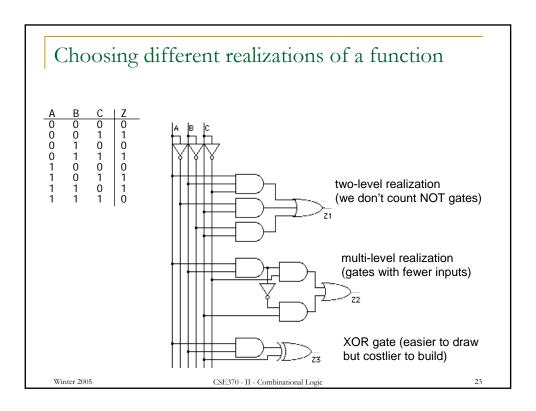
Waveform view of logic functions

- Just a sideways truth table
 - but note how edges don't line up exactly
 - it takes time for a gate to switch its output!



Winter 2005

CSE370 - II - Combinational Logic



Which realization is best?

- Reduce number of inputs
 - literal: input variable (complemented or not)
 - can approximate cost of logic gate as 2 transitors per literal
 - why not count inverters?
 - fewer literals means less transistors
 - smaller circuits
 - fewer inputs implies faster gates
 - gates are smaller and thus also faster
 - fan-ins (# of gate inputs) are limited in some technologies
- Reduce number of gates
 - fewer gates (and the packages they come in) means smaller circuits
 - directly influences manufacturing costs

Which is the best realization? (cont'd)

- Reduce number of levels of gates
 - fewer level of gates implies reduced signal propagation delays
 - minimum delay configuration typically requires more gates
 - wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
 - automated tools to generate different solutions
 - logic minimization: reduce number of gates and complexity
 - logic optimization: reduction while trading off against delay

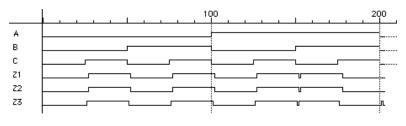
Winter 2005

CSE370 - II - Combinational Logic

25

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - delays are different
 - □ glitches (hazards) may arise these could be bad, it depends
 - variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent



Winter 2005

SE370 - II - Combinational Logic

Implementing Boolean functions

- Technology independent
 - canonical forms
 - two-level forms
 - multi-level forms
- Technology choices
 - packages of a few gates
 - regular logic
 - two-level programmable logic
 - multi-level programmable logic

Winter 2005

CSE370 - II - Combinational Logic

27

Canonical forms

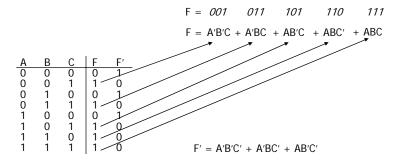
- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- Canonical forms
 - standard forms for a Boolean expression
 - provides a unique algebraic signature

Winter 2005

CSE370 - II - Combinational Logic

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion



Winter 2005

CSE370 - II - Combinational Logic

20

Sum-of-products canonical form (cont'd)

- Product term (or minterm)
 - ANDed product of literals input combination for which output is true
 - each variable appears exactly once, true or inverted (but not both)

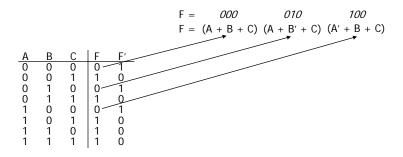
_	Α	В	С	minter	ms	The companies from
	0	0	0	A'B'C'	m0	F in canonical form:
	0	0	1	A'B'C	m1	$F(A, B, C) = \Sigma m(1,3,5,6,7)$
	0	1	0	A'BC'	m2	= m1 + m3 + m5 + m6 + m7 = A'B'C + A'BC + ABC' + ABC'
	0	1	1	A'BC	m3	= ABC + ABC + ABC + ABC + ABC
	1	0	0	AB'C'	m4	canonical form ≠ minimal form
	1	0	1	AB'C	m5	
	1	1	0	ABC'	m6	F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC' = $(A'B' + A'B + AB' + AB)C + ABC'$
	1	1	1	ABC	m7	= (AB + AB + AB + AB)C + ABC'
					1	= ((A + A)(B + B))C + ABC $= C + ABC'$
				on for/ riables	/	= ABC' + C $= AB + C$

Winter 2005

CSE370 - II - Combinational Logic

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion



$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

Winter 2005

CSE370 - II - Combinational Logic

31

Product-of-sums canonical form (cont'd)

- Sum term (or maxterm)
 - ORed sum of literals input combination for which output is false
 - each variable appears exactly once, true or inverted (but not both)

Α	В	С	maxterms	
0	0	0	A+B+C	MO
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	М3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	M6
1	1	1	A'+B'+C'	М7
				_

short-hand notation for maxterms of 3 variables

F in canonical form:

$$F(A, B, C) = \Pi M(0,2,4)$$
= M0 • M2 • M4
= (A + B + C) (A + B' + C) (A' + B + C)

canonical form ≠ minimal form

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

Winter 2005

CSE370 - II - Combinational Logic

S-o-P, P-o-S, and de Morgan's theorem

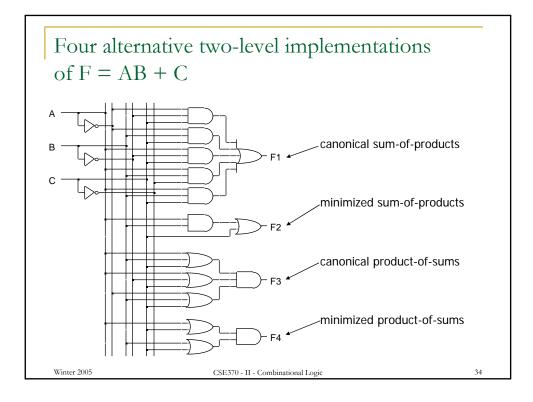
- Sum-of-products
 - \neg F' = A'B'C' + A'BC' + AB'C'
- Apply de Morgan's
 - \Box (F')' = (A'B'C' + A'BC' + AB'C')'
 - \neg F = (A + B + C) (A + B' + C) (A' + B + C)
- Product-of-sums

$$\neg$$
 F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

- Apply de Morgan's
 - (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
 - \Box F = A'B'C + A'BC + ABC' + ABC'

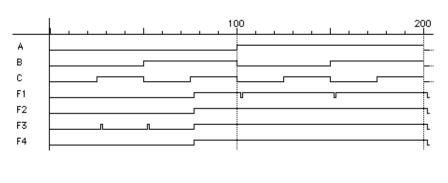
Winter 2005

CSE370 - II - Combinational Logic



Waveforms for the four alternatives

- Waveforms are essentially identical
 - except for timing hazards (glitches)
 - delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)



Winter 2005

CSE370 - II - Combinational Logic

35

Mapping between canonical forms

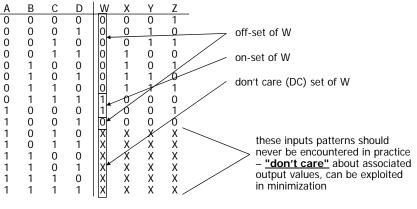
- Minterm to maxterm conversion
 - use maxterms whose indices do not appear in minterm expansion
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - use minterms whose indices do not appear in maxterm expansion
 - e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F'
 - use minterms whose indices do not appear
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
 - use maxterms whose indices do not appear
 - e.g., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

Winter 2005

CSE370 - II - Combinational Logic

Incompleteley specified functions

- Example: binary coded decimal increment by 1
 - BCD digits encode the decimal digits 0 − 9 in the bit patterns 0000 − 1001



Winter 2005

CSE370 - II - Combinational Logic

Notation for incompletely specified functions

- Don't cares and canonical forms
 - so far, only represented on-set
 - also represent don't-care-set
 - need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
 - Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 - $Z = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
 - □ Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15
 - $Z = \Pi [M(1,3,5,7,9) \bullet D(10,11,12,13,14,15)]$

Winter 2005

CSE370 - II - Combinational Logic

Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
 - exploit don't care information in the process
- Algebraic simplification
 - not an algorithmic/systematic procedure
 - how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - to understand automatic tools and their strengths and weaknesses
 - ability to check results (on small examples)

Winter 2005

CSE370 - II - Combinational Logic

20

The uniting theorem

- Key tool to simplification: A (B' + B) = A
- Essence of simplification of two-level logic
 - find two element subsets of the ON-set where only one variable changes its value – this single varying variable can be eliminated and a single product term used to represent both elements

$$F = A'B' + AB' = (A' + A)B' = B'$$

$$A \quad B \quad F$$

$$0 \quad 0 \quad 1$$

$$0 \quad B \text{ has the same value in both on-set rows}$$

$$- B \text{ remains}$$

$$A \text{ has a different value in the two rows}$$

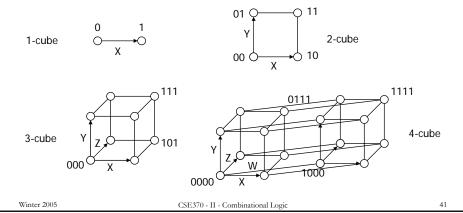
$$- A \text{ is eliminated}$$

Winter 2005

CSE370 - II - Combinational Logic

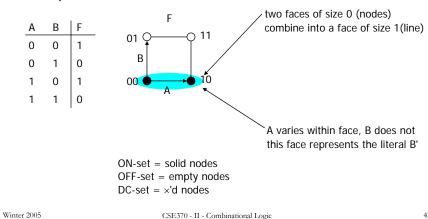
Boolean cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"



Mapping truth tables onto Boolean cubes

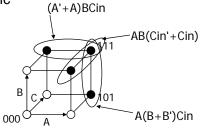
- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:



Three variable example

Binary full-adder carry-out logic

Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1



the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout = BCin + AB + ACin

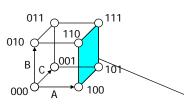
Winter 2005

CSE370 - II - Combinational Logic

43

Higher dimensional cubes

Sub-cubes of higher dimension than 2



 $F(A,B,C) = \Sigma m(4,5,6,7)$

on-set forms a square i.e., a cube of dimension 2

represents an expression in one variable i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A

Winter 2005

CSE370 - II - Combinational Logic

m-dimensional cubes in a n-dimensional Boolean space

- In a 3-cube (three variables):
 - a 0-cube, i.e., a single node, yields a term in 3 literals
 - □ a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
 - an m-subcube within an n-cube (m < n) yields a term with n – m literals

Winter 2005

CSE370 - II - Combinational Logic

45

Karnaugh maps

- Flat map of Boolean cube
 - wrap-around at edges
 - hard to draw and visualize for more than 4 dimensions
 - virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
 - guide to applying the uniting theorem
 - on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

BA	0	1
0	₀ 1	₂ 1
1	1 0	3 0

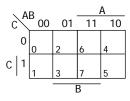
Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

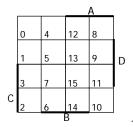
Winter 2005

CSE370 - II - Combinational Logi

Karnaugh maps (cont'd)

- Numbering scheme based on Gray-code
 - □ e.g., 00, 01, 11, 10
 - only a single bit changes in code for adjacent map cells





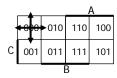
13 = 1101 = ABC'D

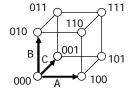
Winter 2005

CSE370 - II - Combinational Logic

Adjacencies in Karnaugh maps

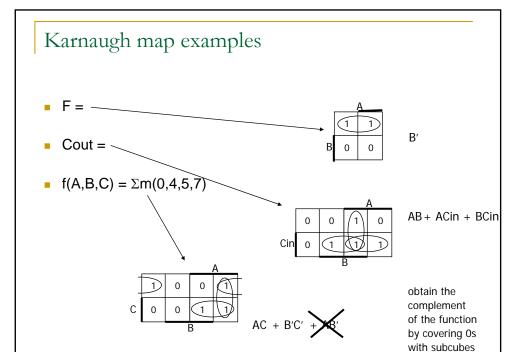
- Wrap from first to last column
- Wrap top row to bottom row





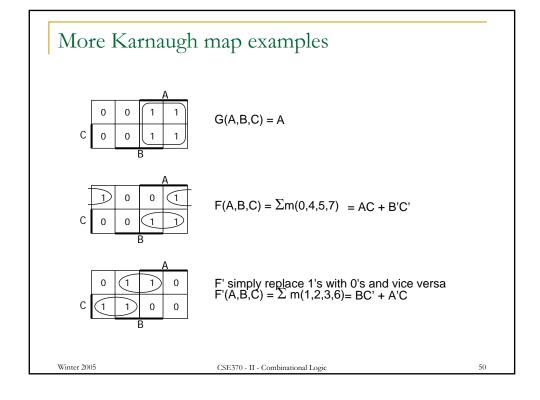
Winter 2005

CSE370 - II - Combinational Logic



CSE370 - II - Combinational Logic

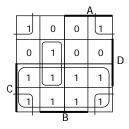
Winter 2005

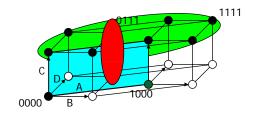


Karnaugh map: 4-variable example

• $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$F = C + A'BD + B'D'$$





find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

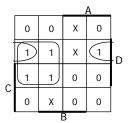
Winter 2005

CSE370 - II - Combinational Logic

E 1

Karnaugh maps: don't cares

- $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - without don't cares
 - f = A'D + B'C'D



Winter 2005

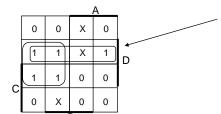
CSE370 - II - Combinational Logic

Karnaugh maps: don't cares (cont'd)

- $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - □ f = A'D + B'C'D

without don't cares

with don't cares



by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

don't cares can be treated as 1s or 0s depending on which is more advantageous

Winter 2005

CSE370 - II - Combinational Logic

E 2

Activity

• Minimize the function $F = \Sigma m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)$

Winter 2005

CSE370 - II - Combinational Logic

Combinational logic summary

- Logic functions, truth tables, and switches
 - □ NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
 - proofs by re-writing and perfect induction
- Gate logic
 - networks of Boolean functions and their time behavior
- Canonical forms
 - two-level and incompletely specified functions
- Simplification
 - a start at understanding two-level simplification
- Later
 - automation of simplification
 - multi-level logic
 - time behavior
 - hardware description languages
 - design case studies

Winter 2005

CSE370 - II - Combinational Logic