Overview

- Optimizing FSMs
 - **∠** Pipelining
 - **∠**Retiming
 - **∠** Partitioning
- Conclusion of sequential logic

CSE 370

Definitions

- Latency: Time to perform a computation
 - Data input to data output
- ◆ Throughput: Input or output data rate
 - Typically the clock rate
- Combinational delays drive performance
 - $d \equiv delay through slowest combinational stage$ $n \equiv$ number of stages from input to output

 - Throughput

 1/d (in Hz)

Pipelining

- What?
 - Subdivide combinational logic
 - Add registers between logic
- Why?
 - Trade latency for throughput
 - Increased throughput
 - ✔ Reduce logic delays
 - **∠** Increase clock speed
 - Increased latency
 - ✓ Takes cycles to fill the pipe
 - Increase circuit utilization
 - **∠** Simultaneous computations

CSE 370

3

Pipelining

- When?
 - Need throughput more than latency
 ✓ Signal processing
 - Logic delays > setup/hold times
 - Acyclic logic
- Where?
 - At natural breaks in the combinational logic
 - Adding registers makes sense

CSE 370

Retiming

- Pipelining adds registers
 - To increase the clock speed
- Retiming moves registers around
 - Reschedules computations to optimize performance
 - ✓ Minimize critical path
 - ∠ Optimize logic across register boundaries
 - **∠** Reduce register count
 - Without altering functionality

CSE 370

Retiming in a nutshell

- Change position of FFs
 - For speed
 - To suit implementation target
- Retiming modifies state assignment
 - Preserves FSM functionality

CSE 370

Retiming groundrules

- Rules:
 - Remove one register from each input and add one to each output
 - Remove one register from each output and add one to each input

CSE 370

Retiming examples

Reduce register count

Change output delays

CSE 370

Optimal pipelining

- Add registers
- Use retiming to optimize location

CSE 370

Example: Digital correlator

- $y_t = \delta(x_t, a_0) + \delta(x_{t-1}, a_1) + \delta(x_{t-2}, a_2) + \delta(x_{t-3}, a_3)$
 - $\delta(x, a) = 1$ if x = a; 0 otherwise

Example: Digital correlator (cont'd)

◆ Delays: Comparator = 3; adder = 7

CSE 370

FSM partitioning

- ◆ Break a large FSM into two or more smaller FSMs
- Rationale
 - Less states in each partition
 - **∠** Simpler minimization and state assignment

 - ✓ Shorter critical path
 - But more logic overall
- Goal
 - Minimize communication between partitions
 - ✓ Minimize wires & I/O
- Partitions are synchronous
 - Same clock!!!

SE 370

Example: Partition the machine

Partition into two halves

CSE 370

Introduce idle states

◆ SA and SB handoff control between machines

Partitioning rules

Rule #1: Source-state transformation Replace by transition to idle state (SA)

Rule #2: Destination state transformation Replace with exit transition from idle state

CSE 370

17

Partitioning rules (con't)

Rule #3: Multiple transitions with same source or destination Source ⇒ Replace by transitions to idle state (SA)

Destination ⇒ Replace with exit transitions from idle state

Rule #4: Hold condition for idle state OR exit conditions and invert

CSE 370

Mealy versus Moore partitions

- Mealy machines undesirable
 - Inputs can affect outputs immediately w`output" can be a handoff to another machine!!!
 - Inputs can ripple through several machines in one clock cycle
- Moore or synchronized Mealy desirable
 - Input-to-output path always broken by a flip-flop
 - But...may take several clocks for input to propagate to output ✔ Output may derive from other side of a partition

CSE 370

Example: Six-state up/down counter

Break into 2 parts

Example: 6 state up/down counter (con't)

- ◆ Count sequence S₀, S₁, S₂, S₃, S₄, S₅
 - S₂ goes to S_A and holds, leaves after S₅
 - S₅ goes to S_B and holds, leaves after S₂
 - Down sequence is similar

SE 370

Minimize communication between partitions

- Ideal world: Two machines handoff control
 - Separate I/O, states, etc.
- Real world: Minimize handoffs and common I/O
 - Minimize number of state bits that cross boundary
 - Merge common outputs
- Look for:
 - Disjoint inputs used in different regions of state diagram
 - Outputs active in only one region of state diagram
 - Isomorphic portions of state diagram

 ✓ Add states, if necessary, to make them so
 - Regions of diagram with a single entry and single exit point

Sequential logic: What you should know

- Sequential logic building blocks
 - Latches (R-S and D)
 - Flip-flops (master/slave D, edge-triggered D & T)
 - Latch and flip-flop timing (setup/hold time, prop delay)
 - Timing diagrams
 - Flip-flop clocking
 - Asynchronous inputs and metastability
 - Registers

CSE 370

Sequential logic: What you should know

- Counters
 - Timing diagrams
 - Shift registers
 - Ripple counters
 - State diagrams and state-transition tables
 - Counter design procedure
 - 1. Draw a state diagram
 - 2. Draw a state-transition table
 - 3. Encode the next-state functions
 - 4. Implement the design
 - Self-starting counters

CSE 370 24

Sequential logic: What you should know

- Finite state machines
 - Timing diagrams (synchronous FSMs)
 - Moore versus Mealy versus registered Mealy
 - FSM design procedure
 - 1. Understand the problem (state diagram & state-transition table)
 - 2. Determine the machine's states (minimize the state diagram)
 - 3. Encode the machine's states (state assignment)
 - 4. Design the next-state logic (minimize the combinational logic)
 - 5. Implement the FSM
 - FSM design guidelines
 - ✓ Separate datapath and control
 - One-hot encoding
 - Pipelining and retiming basics