Combinational logic design case studies

- General design procedure
- Case studies
- BCD to 7-segment display controller
- logical function unit
- process line controller
- calendar subsystem
- Arithmetic circuits
- integer representations
- addition/subtraction
- arithmetic/logic units

General design procedure for combinational logic

- 1. Understand the problem
what is the circuit supposed to do?
write down inputs (data, control) and outputs
draw block diagram or other picture
- 2. Formulate the problem using a suitable design representation truth table or waveform diagram are typical may require encoding of symbolic inputs and outputs
- 3. Choose implementation target
- ROM, PAL, PLA
- mux, decoder and OR-gate
- discrete gates
- 4. Follow implementation procedure
- K-maps for two-level, multi-level
- design tools and hardware description language (e.g., Verilog)

BCD to 7-segment

 display controller- Understanding the problem
- input is a 4 bit bcd digit (A, B, C, D)
- output is the control signals for the display (7 outputs C0 - C6)
- Block diagram

Formalize the problem

- Truth table
- show don't cares
- Choose implementation target
- if ROM, we are done

A	B	C	D	C0	C1	C2	C3	C4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	-	-	-	-	-	-	-	-
1	1	-	-	-	-	-	-	-	-	-

Implementation as minimized sum-of-products

- 15 unique product terms when minimized individually

Implementation as minimized S-o-P (cont'd)

- Can do better
- 9 unique product terms (instead of 15)
- share terms among outputs
- each output not necessarily in minimized form

$C 0=A+B D+C+B^{\prime} D^{\prime}$
$C 0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A$
$C 1=C^{\prime} D^{\prime}+C D+B^{\prime}$
$C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D^{\prime}$
$\begin{array}{ll}C 2 & =B+C^{\prime}+D \\ C\end{array}$
$C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime}$
$C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C$
$\mathrm{C} 3=\mathrm{BC} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{BCD} \mathrm{D}^{\prime}$
$\mathrm{C} 4=\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{CD} \mathrm{D}^{\prime}$
$\mathrm{C} 4=\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{BCD} \mathrm{D}^{\prime}$
$C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime}$
$C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}$
$C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C$
$C 6=B^{\prime} C+B C^{\prime}+B C D^{\prime}+A$

PLA implementation

PAL implementation vs.

Discrete gate implementation

- Limit of 4 product terms per output
- decomposition of functions with larger number of terms
- do not share terms in PAL anyway
(although there are some with some shared terms)
$C 2=B+C^{\prime}+D$
$C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime}$
$C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+W \nsim$ need another input and another output
$W=C D+B C D^{\prime}$
- decompose into multi-level logic (hopefully with CAD support)
- find common sub-expressions among functions
$C 0=C 3+A^{\prime} B X^{\prime}+A D Y$
$C 1=Y+A^{\prime} C 5^{\prime}+C^{\prime} D^{\prime} C 6$
$\mathrm{C} 2=\mathrm{C} 5+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{CD} \quad \mathrm{X}=\mathrm{C}^{\prime}+\mathrm{D}^{\prime}$
$C 3=C 4+B D C 5+A^{\prime} B^{\prime} X^{\prime} \quad Y=B^{\prime} C^{\prime}$
$C 4=D^{\prime} Y+A^{\prime} C D^{\prime}$
$C 5=C^{\prime} C 4+A Y+A^{\prime} B X$
$C 6=A C 4+C C 5+C 4^{\prime} C 5+A^{\prime} B^{\prime} C$

Logical function unit

- Multi-purpose function block
- 3 control inputs to specify operation to perform on operands
- 2 data inputs for operands
- 1 output of the same bit-width as operands

C	C 1	C 2	Function	Comments
0	0	0	1	always 1
0	0	1	$\mathrm{~A}+\mathrm{B}$	logical OR
0	1	0	$(\mathrm{~A} \cdot \mathrm{~B})^{\prime}$	logical NAND
0	1	1	A xor B	logical xor
1	0	0	A xnor B	logical xnor
1	0	1	A \bullet	logical AND
1	1	0	$(\mathrm{~A}+\mathrm{B})^{\prime}$	logical NOR
1	1	1	0	always 0

3 control inputs: C0, C1, C2
2 data inputs: A, B
1 output: F

Formalize the problem

choose implementation technology 5 -variable K-map to discrete gates multiplexor implementation

Production line control

- Rods of varying length (+/-10\%) travel on conveyor belt
- mechanical arm pushes rods within spec (+/-5\%) to one side
- second arm pushes rods too long to other side
- rods that are too short stay on belt
- 3 light barriers (light source + photocell) as sensors
- design combinational logic to activate the arms
- Understanding the problem
- inputs are three sensors
- outputs are two arm control signals
- assume sensor reads "1" when tripped, "0" otherwise
- call sensors A, B, C

Sketch of problem

- Position of sensors
- A to B distance = specification - 5\%
- A to C distance $=$ specification $+5 \%$

Formalize the problem

- Truth table
- show don't cares

A	B	C	Function
0	0	0	do nothing
0	0	1	do nothing
0	1	0	do nothing
0	1	1	do nothing
1	0	0	too short
1	0	1	don't care
1	1	0	in spec
1	1	1	too long

```
logic implementation now straightforward
just use three 3-input AND gates
"too short" = AB'C'
    (only first sensor tripped)
"in spec" = A B C'
    (first two sensors tripped)
"too long" = A B C
    (all three sensors tripped)
```


Calendar subsystem

- Determine number of days in a month (to control watch display)
- used in controlling the display of a wrist-watch LCD screen
inputs: month, leap year flag
- outputs: number of days
- Use software implementation to help understand the problem

Formalize the problem

- Encoding:
- binary number for month: 4 bits
- 4 wires for $28,29,30$, and 31 one-hot - only one true at any time
- Block diagram:

month	leap	28	29	30	31
0000	-	-	-	-	-
0001	-	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	-	0	0	0	1
0100	-	0	0	1	0
0101	-	0	0	0	1
0110	-	0	0	1	0
0111	-	0	0	0	1
1000	-	0	0	0	1
1001	-	0	0	1	0
1010	-	0	0	0	1
1011	-	0	0	1	0
1100	-	0	0	0	1
1101	-	-	-	-	-
$111-$	-	-	-	-	-

Choose implementation target and perform mapping

- Discrete gates
- $28=m 8^{\prime} m 4^{\prime} m 2 m 1^{\prime}$ leap ${ }^{\prime}$
- $29=m 8^{\prime} m 4^{\prime} m 2 m 1^{\prime}$ leap
- $30=\mathrm{m} 8^{\prime} \mathrm{m} 4 \mathrm{~m} 1^{\prime}+\mathrm{m} 8 \mathrm{~m} 1$
- $31=m 8^{\prime} \mathrm{m} 1+\mathrm{m} 8 \mathrm{~m} 1^{\prime}$
- Can translate to S-o-P or P-o-S 111

month	leap	28	29	30	31
0000	-	-	-	-	-
0001	-	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	-	0	0	0	1
0100	-	0	0	1	0
0101	-	0	0	0	1
0110	-	0	0	1	0
0111	-	0	0	0	1
1000	-	0	0	0	1
1001	-	0	0	1	0
1010	-	0	0	0	1
1011	-	0	0	1	0
1100	-	0	0	0	1
1101	-	-	-	-	-
$111-$	-	-	-	-	-

Leap year flag

- Determine value of leap year flag given the year
- For years after 1582 (Gregorian calendar reformation),
- leap years are all the years divisible by 4,
- except that years divisible by 100 are not leap years,
- but years divisible by 400 are leap years.
- Encoding the year:
- binary - easy for divisible by 4 ,
but difficult for 100 and 400 (not powers of 2)
- BCD - easy for 100,
but more difficult for 4, what about 400?
- Parts:
construct a circuit that determines if the year is divisible by 4 construct a circuit that determines if the year is divisible by 100 construct a circuit that determines if the year is divisible by 400 combine the results of the previous three steps to yield the leap year flag

Activity: divisible-by-4 circuit

Divisible-by-100 and divisible-by-400 circuits

- Divisible-by-100 just requires checking that all bits of two low-order digits are all 0 :

YT8' YT4' YT2' YT1' • YO8' YO4' YO2' YO1'

- Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds digits) and divisible-by-100 circuits
(YM1' YH2' YH1' + YM1 YH2 YH1')
- (YT8' YT4' YT2' YT1' • YO8' YO4' YO2' YO1')

Combining to determine leap year flag

- Label results of previous three circuits: D4, D100, and D400

$$
\begin{aligned}
& \text { leap_year_flag }=\mathrm{D} 4\left(\mathrm{D} 100 \cdot \mathrm{D}^{\prime} 00^{\prime}\right)^{\prime} \\
&=\mathrm{D} 4 \cdot \mathrm{D} 100^{\prime}+\mathrm{D} 4 \cdot \mathrm{D} 400 \\
&=\mathrm{D} 4 \cdot \mathrm{D} 100^{\prime}+\mathrm{D} 400
\end{aligned}
$$

Implementation of leap year flag

Arithmetic circuits

- Excellent examples of combinational logic design
- Time vs. space trade-offs
- doing things fast may require more logic and thus more space
- example: carry lookahead logic
- Arithmetic and logic units
general-purpose building blocks
- critical components of processor datapaths
- used within most computer instructions

Number systems

- Representation of positive numbers is the same in most systems
- Major differences are in how negative numbers are represented
- Representation of negative numbers come in three major schemes
- sign and magnitude
- 1 s complement
- 2 s complement
- Assumptions
- we'll assume a 4 bit machine word
- 16 different values can be represented
- roughly half are positive, half are negative

Sign and magnitude

- One bit dedicate to sign (positive or negative) $0100=+4$
- sign: $0=$ positive (or zero), $1=$ negative
- Rest represent the absolute value or magnitude
$1100=-4$
- three low order bits: 0 (000) thru 7 (111)
- Range for n bits
- +/-2n-1-1 (two representations for 0)
- Cumbersome addition/subtraction
- must compare magnitudes to determine sign of result

1s complement

- If N is a positive number, then the negative of N (its 1 s complement or $\left.\mathrm{N}^{\prime}\right)$ is $\mathrm{N}^{\prime}=(2 n-1)-N$
- example: 1 s complement of 7

$$
\begin{array}{ll}
2^{4} & =10000 \\
1 & =00001 \\
2^{4}-1 & =1111 \\
7 & =\frac{0111}{1000}=-7 \text { in 1s complement form }
\end{array}
$$

- shortcut: simply compute bit-wise complement (0111 -> 1000)

1 s complement (cont'd)

- Subtraction implemented by 1 s complement and then addition
- Two representations of 0
- causes some complexities in addition
- High-order bit can act as sign bit

2 s complement

- 1s complement with negative numbers shifted one position clockwise
- only one representation for 0
- one more negative number than positive numbers
- high-order bit can act as sign bit

$$
\begin{aligned}
& 0100=+4 \\
& 1100=-4
\end{aligned}
$$

2 s complement (cont'd)

- If N is a positive number, then the negative of N (its 2 s complement or N^{*}) is $\mathrm{N}^{*}=2 \mathrm{n}-\mathrm{N}$
- example: 2 s complement of 7

$$
\begin{aligned}
2^{4} & =10000 \\
\text { subtract } 7 & =\underline{0111}
\end{aligned}
$$

- example: 2 s complement of -7

1001 = repr. of -7

$$
\begin{aligned}
2^{4} & =10000 \\
\text { subtract }-7 & =\frac{1001}{0111}=\text { repr. of } 7
\end{aligned}
$$

- shortcut: 2 s complement $=$ bit-wise complement +1
- 0111 -> $1000+1$-> 1001 (representation of -7)
- 1001 -> $0110+1$-> 0111 (representation of 7)

2s complement addition and subtraction

- Simple addition and subtraction
- simple scheme makes 2 s complement the virtually unanimous choice for integer number systems in computers

4	0100	-4	1100
+3	0011	+ (-3)	1101
7	0111	- 7	11001
4	0100	-4	1100
-3	1101	+3	0011
1	10001	- 1	1111

Why can the carry-out be ignored?

- Can't ignore it completely
- needed to check for overflow (see next two slides)
- When there is no overflow, carry-out may be true but can be ignored
$-M+N$ when $N>M$:

$$
M^{*}+N=(2 n-M)+N=2 n+(N-M)
$$

ignoring carry-out is just like subtracting $2 n$

$$
\begin{aligned}
& -M+-N \text { where } N+M \leq 2 n-1 \\
& (-M)+(-N)=M^{*}+N^{*}=(2 n-M)+(2 n-N)=2 n-(M+N)+2 n
\end{aligned}
$$

ignoring the carry, it is just the 2 s complement representation for $-(M+N)$

Overflow in 2s complement

addition/subtraction

- Overflow conditions
- add two positive numbers to get a negative number
- add two negative numbers to get a positive number

$5+3=-8$

Overflow conditions

- Overflow when carry into sign bit position is not equal to carry-out

Circuits for binary addition

- Half adder (add 2 1-bit numbers)
- Sum = Ai' Bi + Ai Bi' =Ai xor Bi
- Cout $=\mathrm{Ai} \mathrm{Bi}$
- Full adder (carry-in to cascade for multi-bit adders)
- Sum $=\mathrm{Ci}$ xor A xor B
- Cout $=B C i+A C i+A B=C i(A+B)+A B$

Ai	Bi	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Ai	Bi	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full adder implementations

- Alternative implementation

Cout $=\mathrm{A} \mathrm{B}+\operatorname{Cin}(\mathrm{A}$ xor B$)=\mathrm{AB}+\mathrm{BCin}+\mathrm{A}$ Cin

- 5 gates
- half adder is an XOR gate and AND gate
- 2 XORs, 2 ANDs, 1 OR

Adder/subtractor

- Use an adder to do subtraction thanks to 2 s complement representation
- $A-B=A+(-B)=A+B^{\prime}+1$
- control signal selects B or $2 s$ complement of B

Ripple-carry adders

- Critical delay
- the propagation of carry from low to high order stages

Ripple-carry adders (cont'd)

- Critical delay
- the propagation of carry from low to high order stages
- $1111+0001$ is the worst case addition
- carry must propagate through all bits

Carry-lookahead logic

- Carry generate: $\mathrm{Gi}=\mathrm{Ai} \mathrm{Bi}$
- must generate carry when $A=B=1$
- Carry propagate: $\mathrm{Pi}=\mathrm{Ai}$ xor Bi
- carry-in will equal carry-out here
- Sum and Cout can be re-expressed in terms of generate/propagate:
- $\mathrm{Si}=\mathrm{Ai}$ xor Bi xor Ci
= Pi xor Ci
- $\mathrm{Ci}+1=\mathrm{Ai} \mathrm{Bi}+\mathrm{AiCi}+\mathrm{BiCi}$
$=A i B i+C i(A i+B i)$
$=\mathrm{Ai} \mathrm{Bi}+\mathrm{Ci}(\mathrm{Ai}$ xor Bi$)$
$=\mathrm{Gi}+\mathrm{CiPi}$

Carry-lookahead logic (cont'd)

- Re-express the carry logic as follows:
- $\mathrm{C} 1=\mathrm{G} 0+\mathrm{P} 0 \mathrm{C} 0$
- $\mathrm{C} 2=\mathrm{G} 1+\mathrm{P} 1 \mathrm{C} 1=\mathrm{G} 1+\mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$
- $\mathrm{C} 3=\mathrm{G} 2+\mathrm{P} 2 \mathrm{C} 2=\mathrm{G} 2+\mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 2 \mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$
- $\mathrm{C} 4=\mathrm{G} 3+\mathrm{P} 3 \mathrm{C} 3=\mathrm{G} 3+\mathrm{P} 3 \mathrm{G} 2+\mathrm{P} 3 \mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 3 \mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0$ + P3 P2 P1 P0 C0
- Each of the carry equations can be implemented with two-level logic
a all inputs are now directly derived from data inputs and not from intermediate carries
- this allows computation of all sum outputs to proceed in parallel

Carry-lookahead implementation

- Adder with propagate and generate outputs

Carry-lookahead implementation (cont’d)

- Carry-lookahead logic generates individual carries
- sums computed much more quickly in parallel
- however, cost of carry logic increases with more stages

Carry-lookahead adder

 with cascaded carry-lookahead logic- Carry-lookahead adder
$\mathrm{G}=\mathrm{G} 3+\mathrm{P} 3 \mathrm{G} 2+\mathrm{P} 3 \mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 3 \mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0$
- 4 four-bit adders with internal carry lookahead

P = P3 P2 P1 P0

- second level carry lookahead unit extends lookahead to 16 bits

Carry-select adder

- Redundant hardware to make carry calculation go faster
- compute two high-order sums in parallel while waiting for carry-in
- one assuming carry-in is 0 and another assuming carry-in is 1
- select correct result once carry-in is finally computed

Arithmetic logic unit design specification

M = 0, logical bitwise operations

S1	SO	Function	Comment
0	0	$\mathrm{Fi}=\mathrm{Ai}$	input Ai transferred to output
0	1	$\mathrm{Fi}=$ not Ai	complement of Ai transferred to output
1	0	$\mathrm{Fi}=\mathrm{Ai}$ xor Bi	compute XOR of Ai, Bi
1	1	$\mathrm{Fi}=\mathrm{Ai}$ xnor Bi	compute XNOR of $\mathbf{A i}, \mathrm{Bi}$

$M=1, C O=0$, arithmetic operations

0	0	$F=A$
0	1	$F=\operatorname{not} A$
1	0	$F=A$ plus B
1	1	$F=(\operatorname{not} A)$ plus B

input A passed to output
complement of A passed to output sum of A and B
sum of B and complement of A
$M=1, C O=1$, arithmetic operations

0	0	$F=A$ plus 1
0	1	$F=($ not $A)$ plus 1
1	0	$F=A$ plus B plus 1
1	1	$F=(\operatorname{not} A)$ plus B plus 1

increment A
twos complement of A
increment sum of A and B
B minus A
logical and arithmetic operations not all operations appear useful, but "fall out" of internal logic

Arithmetic logic unit design (cont'd)

- Sample ALU - truth table

M	S1	S0		Ai	Bi	Fi	$\underline{\mathrm{c}+1}$
O	0	0	X			0	X
	0	1	X \times	${ }_{0}^{1}$	X	1	\times
			X	1	X	0	X
	1	0	x	0	0	0	X
			\times	0	1	1	\times
			X	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	1	\times
	1	1	X	0	0		X
			X	0	1	0	X
			X	1	0		X
						1	X
1	0	0	0	1	X	1	X
	0	1	0	0	X	1	X
	1	0	0	${ }_{0}^{1}$	X	0	X
			0	0	1	1	0
			0	1	0	1	0
	1	1	0	0	0	1	1
			0	0	1	0	1
			0	1	0	0	0
1	0	0					
			1	1	X	0	1
	0	1	1	0	X	0	1
		0	1	${ }_{0}^{1}$	X	1	0
			1	0	1	0	1
			1	1	0	0	1
			1	1	1	1	1
	1	1	1	0	0	0	1
			1	0	1	1	1
			${ }_{1}^{1}$	${ }_{1}^{1}$	1	${ }_{0}^{1}$	1

Arithmetic logic unit design (cont'd)

- Sample ALU - multi-level discrete gate logic implementation

12 gates

Arithmetic logic unit design (cont'd)

Summary for examples of combinational logic

- Combinational logic design process
- formalize problem: encodings, truth-table, equations
- choose implementation technology (ROM, PAL, PLA, discrete gates)
- implement by following the design procedure for that technology
- Binary number representation
- positive numbers the same
- difference is in how negative numbers are represented
- 2 s complement easiest to handle: one representation for zero, slightly complicated complementation, simple addition
- Circuits for binary addition
- basic half-adder and full-adder
- carry lookahead logic
- carry-select
- ALU Design
- specification, implementation

