Combinational Logic Technologies

- Standard gates
- gate packages
- cell libraries
- Regular logic
- multiplexers
- decoders
- Two-level programmable logic
- PALs
- PLAs
- ROMs

Random logic

- Transistors quickly integrated into logic gates (1960s)
- Catalog of common gates (1970s)
- Texas Instruments Logic Data Book - the yellow bible
- all common packages listed and characterized (delays, power)
- typical packages:
- in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates
- Today, very few parts are still in use
- However, parts libraries exist for chip design
- designers reuse already characterized logic gates on chips
- same reasons as before
- difference is that the parts don't exist in physical inventory created as needed

Random logic

- Too hard to figure out exactly what gates to use
- map from logic to NAND/NOR networks
- determine minimum number of packages
- slight changes to logic function could decrease cost
- Changes to difficult to realize
- need to rewire parts
- may need new parts
- design with spares (few extra inverters and gates on every board)

Regular logic

- Need to make design faster
- Need to make engineering changes easier to make
- Simpler for designers to understand and map to functionality
- harder to think in terms of specific gates
- better to think in terms of a large multi-purpose block

Making connections

- Direct point-to-point connections between gates
- wires we've seen so far
- Route one of many inputs to a single output --- multiplexer
- Route a single input to one of many outputs --- demultiplexer

multiplexer

demultiplexer

4×4 switch

Mux and demux

- Switch implementation of multiplexers and demultiplexers
- can be composed to make arbitrary size switching networks
- used to implement multiple-source/multiple-destination interconnections

Mux and demux (cont'd)

- Uses of multiplexers/demultiplexers in multi-point connections

Multiplexers/selectors

- Multiplexers/selectors: general concept
- 2^{n} data inputs, n control inputs (called "selects"), 1 output
- used to connect 2^{n} points to a single point
- control signal pattern forms binary index of input connected to output

$$
\mathrm{Z}=\mathrm{A}^{\prime} \mathrm{I}_{0}+\mathrm{A} \mathrm{I}_{1}
$$

 for a 2:1 Mux truth table

Multiplexers/selectors (cont'd)

- 2:1 mux: $Z=A^{\prime} I_{0}+\mathrm{Al}_{1}$
- $4: 1$ mux: $\quad Z=A^{\prime} B^{\prime} I_{0}+A^{\prime} \mathrm{BI}_{1}+\mathrm{AB}^{\prime} I_{2}+\mathrm{ABI}_{3}$
- $8: 1$ mux: $Z=A^{\prime} B^{\prime} C^{\prime} I_{0}+A^{\prime} B^{\prime} C I_{1}+A^{\prime} B C^{\prime} I_{2}+A^{\prime} B_{C l}+$ $\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{I}_{4}+\mathrm{AB'Cl}_{5}+\mathrm{ABC}_{6}+\mathrm{ABCl}_{7}$
- In general: $Z=\sum_{k=0}^{2^{n}-1}\left(m_{k} l_{k}\right)$
- in minterm shorthand form for a $2^{\mathrm{n}}: 1$ Mux

Gate level implementation of muxes

- 2:1 mux

- $4: 1$ mux

Cascading multiplexers

- Large multiplexers can be made by cascading smaller ones

control signals B and C simultaneously choose one of $10,11,12,13$ and one of $14,15,16,17$
control signal A chooses which of the upper or lower mux's output to gate to Z

Multiplexers as general-purpose logic

- A $2^{\mathrm{n}}: 1$ multiplexer can implement any function of n variables
- with the variables used as control inputs and
- the data inputs tied to 0 or 1
- in essence, a lookup table
- Example:
- $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{m0} 0+\mathrm{m} 2+\mathrm{m} 6+\mathrm{m} 7$

$$
\begin{aligned}
& =A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B C '+A B C \\
& =A^{\prime} B^{\prime} C^{\prime}(1)+A^{\prime} B^{\prime} C(0) \\
& \text { + A'BC'(1) + A'BC(0) } \\
& +A B^{\prime} C^{\prime}(0)+A B^{\prime} C(0) \\
& +A B C '(1)+A B C(1)
\end{aligned}
$$

$Z=A^{\prime} B^{\prime} C^{\prime} I_{0}+A^{\prime} B^{\prime} C I_{1}+A^{\prime} B C^{\prime} I_{2}+A^{\prime} B C I_{3}+$
$A B^{\prime} C^{\prime}{ }_{4}+A B^{\prime} C_{5}+A B C^{\prime}{ }_{6}+A B C I_{7}$

Multiplexers as general-purpose logic (cont'd)

- A $2^{n-1}: 1$ multiplexer can implement any function of n variables
- with $n-1$ variables used as control inputs and
- the data inputs tied to the last variable or its complement
- Example:
- $F(A, B, C)=m 0+m 2+m 6+m 7$

$$
\begin{aligned}
& =A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC} \mathrm{C}^{\prime}+\mathrm{ABC} C^{\prime}+\mathrm{ABC} \\
& =\mathrm{A}^{\prime} \mathrm{B}^{\prime}\left(\mathrm{C}^{\prime}\right)+\mathrm{A}^{\prime} \mathrm{B}\left(\mathrm{C}^{\prime}\right)+\mathrm{AB} \mathrm{~B}^{\prime}(0)+\mathrm{AB}(1)
\end{aligned}
$$

A	B	C	F	
0	0	0	1	C^{\prime}
0	0	1	0	
0	1	0	1	C^{\prime}
0	1	1	0	
1	0	0	0	0
1	0	1	0	
1	1	0	1	1
1	1	1	1	

Multiplexers as general-purpose logic (cont'd)

- Generalization

four possible $n-1$ mux control variables single mux data variable
- Example:

G(A,B,C,D) can be realized by an 8:1 MUX
choose A, B, C as control variables

A	B	C	D	G
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Activity

- Realize F = B'CD' + ABC' with a 4:1 multiplexer and a minimum of other gates:

Demultiplexers/decoders

- Decoders/demultiplexers: general concept
- single data input, n control inputs, 2^{n} outputs
- control inputs (called "selects" (S)) represent binary index of output to which the input is connected
- data input usually called "enable" (G)

> 3:8 Decoder:
> $\overline{\mathrm{O}}=\mathrm{G} \cdot \mathrm{S} 2^{\prime} \cdot \mathrm{S1}^{\prime} \cdot \mathrm{SO}^{\prime}$
> $\mathrm{O} 1=\mathrm{G} \cdot \mathrm{S}^{\prime} \cdot \mathrm{S}^{\prime} \cdot \mathrm{S} 0$
> $\mathrm{O} 2=\mathrm{G} \cdot \mathrm{S} 2^{\prime} \cdot \mathrm{S} 1 \cdot \mathrm{SO}^{\prime}$
> $\mathrm{O} 3=\mathrm{G} \cdot \mathrm{S} 2^{\prime} \cdot \mathrm{S} 1 \cdot \mathrm{~S} 0$
> $\mathrm{O} 4=\mathrm{G} \cdot \mathrm{S} 2 \cdot \mathrm{~S}^{\prime} \cdot \mathrm{SO}^{\prime}$
> $\mathrm{O} 5=\mathrm{G} \cdot \mathrm{S} 2 \cdot \mathrm{~S} 1^{\prime} \cdot \mathrm{S} 0$
> $\mathrm{O6}=\mathrm{G} \cdot \mathrm{S} 2 \cdot \mathrm{~S} 1 \cdot \mathrm{SO}^{\prime}$
> $\mathrm{O} 7=\mathrm{G} \cdot \mathrm{S} 2 \cdot \mathrm{~S} 1 \cdot \mathrm{~S} 0$

Gate level implementation of demultiplexers

- 1:2 decoders active-high

- 2:4 decoders

Demultiplexers as general-purpose logic

- A $\mathrm{n}: 2^{\mathrm{n}}$ decoder can implement any function of n variables
- with the variables used as control inputs
- the enable inputs tied to 1 and
- the appropriate minterms summed to form the function

demultiplexer generates appropriate minterm based on control signals (it "decodes" control signals)

Demultiplexers as general-purpose logic (cont'd)

- F1 = A'BC'D + A'B'CD + ABCD
- $F 2=A B C^{\prime} D^{\prime}+A B C$
- F 3 = $\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)$

A B C D

Cascading decoders

- 5:32 decoder
- 1x2:4 decoder
- $4 \times 3: 8$ decoders

AB'CDE

Programmable logic arrays

- Pre-fabricated building block of many AND/OR gates
- actually NOR or NAND
- "personalized" by making/breaking connections among the gates
- programmable array block diagram for sum of products form

Enabling concept

- Shared product terms among outputs

$$
\begin{array}{ll}
& F 0=A+B^{\prime} C^{\prime} \\
\text { example: } & F 1=A C^{\prime}+A B \\
& F 2=B^{\prime} C^{\prime}+A B \\
& F 3=B^{\prime} C+A
\end{array}
$$

Before programming

- All possible connections are available before "programming" - in reality, all AND and OR gates are NANDs

After programming

- Unwanted connections are "blown"
- fuse (normally connected, break unwanted ones)
- anti-fuse (normally disconnected, make wanted connections)

Alternate representation for high fan-in structures

- Short-hand notation so we don't have to draw all the wires - \times signifies a connection is present and perpendicular signal is an input to gate

notation for implementing F0 $=A B+A^{\prime} B^{\prime}$ $F 1=C D^{\prime}+C^{\prime} D$

Programmable logic array example

- Multiple functions of A, B, C

F1 = A B C
$F 2=A+B+C$
F3 = A' B' C'
$\mathrm{F} 4=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$
F5 = A xor B xor C
F6 = A xnor B xnor C
A B C F1 F2 F3 F4 F5 F6
0000011100

0	0	1	0	1	0	1	1

$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}$ 01110110100

1	0	0	0	1	0	1	1	1

1	0	1	0	1	0	1	0	0

$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$

1	1	1	1	1	0	0	1	1

PALs and PLAs

- Programmable logic array (PLA)
- what we've seen so far
- unconstrained fully-general AND and OR arrays
- Programmable array logic (PAL)
- constrained topology of the OR array
- innovation by Monolithic Memories
- faster and smaller OR plane
a given column of the OR array has access to only a subset of the possible product terms

PALs and PLAs: design example

- BCD to Gray code converter

A	B	C	D	W	X	Y	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	1	1	1	0
0	1	1	0	1	0	1	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	1
1	0	0	1	1	0	0	0
1	0	1	-	-	-	-	-
1	1	-	-	-	-	-	-

minimized functions:
$W=A+B D+B C$
$X=B C^{\prime}$
$Y=B+C$
$Z=A^{\prime} B^{\prime} C^{\prime} D+B C D+A D^{\prime}+B^{\prime} C D^{\prime}$

PALs and PLAs: design example (cont'd)

- Code converter: programmed PLA

minimized functions:
$W=A+B D+B C$
$X=B C$
$Y=B+C$
$Z=A^{\prime} B^{\prime} C^{\prime} D+B C D+A D^{\prime}+B^{\prime} C D^{\prime}$
not a particularly good candidate for PAL/PLA implementation since no terms are shared among outputs
however, much more compact and regular implementation when compared with discrete AND and OR gates

PALs and PLAs: design example (cont'd)

- Code converter: programmed PAL

4 product terms per each OR gate

PALs and PLAs: design example (cont'd)

- Code converter: NAND gate implementation
- loss or regularity, harder to understand
- harder to make changes

PALs and PLAs: another design example

- Magnitude comparator

A	B	C	D	EQ	NE	LT	GT
0	0	0	0	1	0	0	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	1
0	1	0	1	1	0	0	0
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	0	1
1	0	1	0	1	0	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	1	0	1
1	1	0	1	0	1	0	1
1	1	1	0	0	1	0	1
1	1	1	1	1	0	0	0

minimized functions:
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime}$ $L T=A^{\prime} C+A^{\prime} B^{\prime} D+B^{\prime} C D$

$$
\begin{aligned}
& \mathrm{NE}=A \mathrm{AC}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{B}^{\prime} \mathrm{D}+\mathrm{BD}^{\prime} \\
& \mathrm{GT}=A \mathrm{C}^{\prime}+\mathrm{ABC}+\mathrm{BC}^{\prime} \mathrm{D}^{\prime}
\end{aligned}
$$

Activity

- Map the following functions to the PLA below:
- $W=A B+A^{\prime} C^{\prime}+B C^{\prime}$
- $X=A B C+A B^{\prime}+A^{\prime} B$
- $Y=A B C^{\prime}+B C+B^{\prime} C^{\prime}$

Activity (cont'd)

Read-only memories

- Two dimensional array of 1 s and 0 s
word lines (only one is active - decoder is entry (row) is called a "word"
- width of row = word-size
- index is called an "address"
address is input - selected word is output internal organization

ROMs and combinational logic

- Combinational logic implementation (two-level canonical form) using a ROM

$$
\begin{aligned}
& F 0=A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C \\
& F 1=A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B C \\
& F 2=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime} \\
& F 3=A^{\prime} B C+A B^{\prime} C^{\prime}+A B C^{\prime}
\end{aligned}
$$

A	B	C	F0	F1	F2	F3
0	0	0	0	0	1	0
0	0	1	1	1	1	0
0	1	0	0	1	0	0
0	1	1	0	0	0	1
1	0	0	1	0	1	1
1	0	1	1	0	0	0
1	1	0	0	0	0	1
1	1	1	0	1	0	0

truth table
block diagram

ROM structure

- Similar to a PLA structure but with a fully decoded AND array - completely flexible OR array (unlike PAL)

ROM vs. PLA

- ROM approach advantageous when
- design time is short (no need to minimize output functions)
- most input combinations are needed (e.g., code converters)
- little sharing of product terms among output functions
- ROM problems
- size doubles for each additional input
can't exploit don't cares
- PLA approach advantageous when
- design tools are available for multi-output minimization
- there are relatively few unique minterm combinations
- many minterms are shared among the output functions
- PAL problems
- constrained fan-ins on OR plane

Regular logic structures for two-level logic

- ROM - full AND plane, general OR plane
- cheap (high-volume component)
- can implement any function of n inputs
- medium speed
- PAL - programmable AND plane, fixed OR plane
- intermediate cost
- can implement functions limited by number of terms
- high speed (only one programmable plane that is much smaller than ROM's decoder)
- PLA - programmable AND and OR planes
- most expensive (most complex in design, need more sophisticated tools)
- can implement any function up to a product term limit
- slow (two programmable planes)

Regular logic structures for multi-level logic

- Difficult to devise a regular structure for arbitrary connections between a large set of different types of gates
- efficiency/speed concerns for such a structure
- in 467 you'll learn about field programmable gate arrays (FPGAs) that are just such programmable multi-level structures
- programmable multiplexers for wiring
- lookup tables for logic functions (programming fills in the table)
- multi-purpose cells (utilization is the big issue)
- Use multiple levels of PALs/PLAs/ROMs
- output intermediate result
- make it an input to be used in further logic

Combinational logic technology summary

- Random logic
- Single gates or in groups
- conversion to NAND-NAND and NOR-NOR networks
- transition from simple gates to more complex gate building blocks
- reduced gate count, fan-ins, potentially faster
- more levels, harder to design
- Time response in combinational networks
- gate delays and timing waveforms
- hazards/glitches (what they are and why they happen)
- Regular logic
multiplexers/decoders
ROMs
PLAs/PALs
advantages/disadvantages of each

