Working with combinational logic

- Simplification
 - two-level simplification
 - exploiting don't cares
 - algorithm for simplification
- Logic realization
 - two-level logic and canonical forms realized with NANDs and NORs
 - multi-level logic, converting between ANDs and ORs
- Time behavior
- Hardware description languages

CSE370 - III - Working with Combinational Logic

Design example: two-bit comparator

we'll need a 4-variable Karnaugh map for each of the 3 output functions

CSE370 - III - Working with Combinational Logic

^

Design example: two-bit comparator (cont'd)

K-map for LT

K-map for EQ

K-map for GT

LT = A'B'D + A'C + B'CD

 $EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD' = (Axnor C) \bullet (Bxnor D)$

GT = BC'D' + AC' + ABD'

LT and GT are similar (flip A/C and B/D)

CSE370 - III - Working with Combinational Logic

3

Design example: two-bit comparator (cont'd)

two alternative implementations of EQ with and without XOR

XNOR is implemented with at least 3 simple gates

CSE370 - III - Working with Combinational Logic

Design example: BCD increment by 1

block diagram and truth table

18	I4	I2	I1	08	04	02	01
18 0 0 0 0 0 0 0 1 1 1 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\$	12 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	$0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1$	0 0 0 0 0 0 0 0 1 1 0 X X X X X	0 0 1 1 1 0 0 0 X X X X X	0 1 1 0 0 1 1 0 0 0 X X X X X	1 0 1 0 1 0 1 0 X X X X X

4-variable K-map for each of the 4 output functions

CSE370 - III - Working with Combinational Logic

Design example: BCD increment by 1 (cont'd)

<u>02</u> Χ 0 Χ 0 11

O4 = I4 I2' + I4 I1' + I4' I2 I1 ^{I2} O2 = I8' I2' I1 + I2 I1'

CSE370 - III - Working with Combinational Logic

Definition of terms for two-level simplification

- Implicant
 - single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
- Prime implicant
 - implicant that can't be combined with another to form a larger subcube
- Essential prime implicant
 - prime implicant is essential if it alone covers an element of ON-set
 - will participate in ALL possible covers of the ON-set
 - DC-set used to form prime implicants but not to make implicant essential
- Objective:
 - grow implicant into prime implicants (minimize literals per term)
 - cover the ON-set with as few prime implicants as possible (minimize number of product terms)

CSE370 - III - Working with Combinational Logic

Algorithm for two-level simplification

- Algorithm: minimum sum-of-products expression from a Karnaugh map
 - Step 1: choose an element of the ON-set
 - Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
 - consider top/bottom row, left/right column, and corner adjacencies
 - this forms prime implicants (number of elements always a power of 2)
 - Repeat Steps 1 and 2 to find all prime implicants
 - Step 3: revisit the 1s in the K-map
 - if covered by single prime implicant, it is essential, and participates in final cover
 - 1s covered by essential prime implicant do not need to be revisited
 - Step 4: if there remain 1s not covered by essential prime implicants
 - select the smallest number of prime implicants that cover the remaining 1s

CSE370 - III - Working with Combinational Logic

Activity

List all prime implicants for the following K-map:

		A						
	х	0	Х	0				
	0	1	Χ	1	D			
С	0	х	Х	0				
	Χ	1	1	1				
			_					

- Which are essential prime implicants?
- What is the minimum cover?

CSE370 - III - Working with Combinational Logic

Implementations of two-level logic

- Sum-of-products
 - AND gates to form product terms (minterms)
 - OR gate to form sum

- Product-of-sums
 - OR gates to form sum terms (maxterms)
 - AND gates to form product

CSE370 - III - Working with Combinational Logic

1.

Two-level logic using NAND gates

- Replace minterm AND gates with NAND gates -
- Place compensating inversion at inputs of OR gate

CSE370 - III - Working with Combinational Logic

15

Two-level logic using NAND gates (cont'd)

- OR gate with inverted inputs is a NAND gate
 - □ de Morgan's: $A' + B' = (A \cdot B)'$
- Two-level NAND-NAND network
 - inverted inputs are not counted
 - in a typical circuit, inversion is done once and signal distributed

CSE370 - III - Working with Combinational Logic

Two-level logic using NOR gates

- Replace maxterm OR gates with NOR gates -
- Place compensating inversion at inputs of AND gate

CSE370 - III - Working with Combinational Logic

17

Two-level logic using NOR gates (cont'd)

- AND gate with inverted inputs is a NOR gate
 - □ de Morgan's: $A' \cdot B' = (A + B)'$
- Two-level NOR-NOR network
 - inverted inputs are not counted
 - in a typical circuit, inversion is done once and signal distributed

CSE370 - III - Working with Combinational Logic

Two-level logic using NAND and NOR gates

- NAND-NAND and NOR-NOR networks
 - □ de Morgan's law: $(A + B)' = A' \cdot B'$ $(A \cdot B)' = A' + B'$
 - \Box written differently: $A + B = (A' \cdot B')'$ $(A \cdot B) = (A' + B')'$
- In other words
 - OR is the same as NAND with complemented inputs
 - AND is the same as NOR with complemented inputs
 - NAND is the same as OR with complemented inputs
 - NOR is the same as AND with complemented inputs

CSE370 - III - Working with Combinational Logic

19

Conversion between forms

- Convert from networks of ANDs and ORs to networks of NANDs and NORs
 - introduce appropriate inversions ("bubbles")
- Each introduced "bubble" must be matched by a corresponding "bubble"
 - conservation of inversions

CSE370 - III - Working with Combinational Logic

Conversion between forms (cont'd)

Example: verify equivalence of two forms

$$Z = [(A \cdot B)' \cdot (C \cdot D)']'$$

$$= [(A' + B') \cdot (C' + D')]'$$

$$= [(A' + B')' + (C' + D')']$$

$$= (A \cdot B) + (C \cdot D) \checkmark$$

 $\ensuremath{\mathsf{CSE370}}\xspace$ - III - Working with Combinational Logic

21

Conversion between forms (cont'd)

Example: map AND/OR network to NOR/NOR network

Conversion between forms (cont'd)

Example: verify equivalence of two forms

$$Z = \{ [(A' + B')' + (C' + D')']' \}'$$

$$= \{ (A' + B') \cdot (C' + D') \}'$$

$$= (A' + B')' + (C' + D')'$$

$$= (A \cdot B) + (C \cdot D) \checkmark$$

CSE370 - III - Working with Combinational Logic

22

Multi-level logic

- x = ADF + AEF + BDF + BEF + CDF + CEF + G
 - □ reduced sum-of-products form already simplified
 - 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
 - 25 wires (19 literals plus 6 internal wires)
- X = (A + B + C) (D + E) F + G
 - □ factored form not written as two-level S-o-P
 - □ 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 - □ 10 wires (7 literals plus 3 internal wires)

Conversion to AOI forms

- General procedure to place in AOI form
 - compute the complement of the function in sum-of-products form
 - by grouping the 0s in the Karnaugh map
- Example: XOR implementation
 - \Box A xor B = A' B + A B'
 - AOI form:
 - F = (A' B' + A B)'

CSE370 - III - Working with Combinational Logic

20

Examples of using AOI gates

- Example:
 - \Box F = AB + AC' + BC'
 - \neg F = (A' B' + A' C + B' C)'
 - Implemented by 2-input 3-stack AOI gate
 - \neg F = (A + B) (A + C') (B + C')
 - \neg F = [(A' + B') (A' + C) (B' + C)]'
 - Implemented by 2-input 3-stack OAI gate
- Example: 4-bit equality function
 - = Z = (A0 B0 + A0' B0')(A1 B1 + A1' B1')(A2 B2 + A2' B2')(A3 B3 + A3' B3')

each implemented in a single 2x2 AOI gate

CSE370 - III - Working with Combinational Logic

Examples of using AOI gates (cont'd)

Example: AOI implementation of 4-bit equality function

Summary for multi-level logic

- Advantages
 - circuits may be smaller
 - gates have smaller fan-in
 - circuits may be faster
- Disadvantages
 - more difficult to design
 - tools for optimization are not as good as for two-level
 - analysis is more complex

CSE370 - III - Working with Combinational Logic

Time behavior of combinational networks

- Waveforms
 - visualization of values carried on signal wires over time
 - useful in explaining sequences of events (changes in value)
- Simulation tools are used to create these waveforms
 - input to the simulator includes gates and their connections
 - input stimulus, that is, input signal waveforms
- Some terms
 - gate delay time for change at input to cause change at output
 - min delay typical/nominal delay max delay
 - careful designers design for the worst case
 - rise time time for output to transition from low to high voltage
 - fall time time for output to transition from high to low voltage
 - pulse width time that an output stays high or stays low between changes

CSE370 - III - Working with Combinational Logic

Momentary changes in outputs

- Can be useful pulse shaping circuits
- Can be a problem incorrect circuit operation (glitches/hazards)

delays matter

CSE370 - III - Working with Combinational Logic

Hardware description languages

- Describe hardware at varying levels of abstraction
- Structural description
 - textual replacement for schematic
 - hierarchical composition of modules from primitives
- Behavioral/functional description
 - describe what module does, not how
 - synthesis generates circuit for module
- Simulation semantics

HDLs

- Abel (circa 1983) developed by Data-I/O
 - targeted to programmable logic devices
 - not good for much more than state machines
- ISP (circa 1977) research project at CMU
 - simulation, but no synthesis
- Verilog (circa 1985) developed by Gateway (absorbed by Cadence)
 - similar to Pascal and C
 - delays is only interaction with simulator
 - fairly efficient and easy to write
 - IEEE standard
- VHDL (circa 1987) DoD sponsored standard
 - similar to Ada (emphasis on re-use and maintainability)
 - simulation semantics visible
 - very general but verbose
 - IEEE standard

CSE370 - III - Working with Combinational Logic

37

Verilog

- Supports structural and behavioral descriptions
- Structural
 - explicit structure of the circuit
 - e.g., each logic gate instantiated and connected to others
- Behavioral
 - program describes input/output behavior of circuit
 - many structural implementations could have same behavior
 - e.g., different implementation of one Boolean function
- We'll mostly be using behavioral Verilog in Aldec ActiveHDL
 - rely on schematic when we want structural descriptions

CSE370 - III - Working with Combinational Logic

Structural model

```
module xor_gate (out, a, b);
  input a, b;
  output out;
  wire abar, bbar, t1, t2;

  inverter invA (abar, a);
  inverter invB (bbar, b);
  and_gate and1 (t1, a, bbar);
  and_gate and2 (t2, b, abar);
  or_gate or1 (out, t1, t2);
```

CSE370 - III - Working with Combinational Logic

20

Simple behavioral model

Continuous assignment

```
module xor_gate (out, a, b);
input a, b;
output out;
reg out;

simulation register -
keeps track of
value of signal

assign #6 out = a ^ b;
endmodule

delay from input change
to output change
```

CSE370 - III - Working with Combinational Logic

Simple behavioral model

always block

```
module xor_gate (out, a, b);
input     a, b;
output     out;
reg     out;

always @(a or b) begin
    #6 out = a ^ b;
end

endmodule
```

specifies when block is executed ie. triggered by which signals

CSE370 - III - Working with Combinational Logic

41

Blocking assignment

- The = token represents a token represents a blocking procedural assignment
- Evaluated and assigned in a single step
- Execution flow within the procedure is blocked until the assignment is completed
- Evaluations of concurrent statements in the same time step are blocked until the assignment is completed
- This example will not not work. Why not?
 - //swap bytes in word
 - always @(posedge clk)
 - begir
 - word[15:8] = word[7:0];
 - word[7:0] = word[15:8];
 - end

CSE370 - III - Working with Combinational Logic

Non-blocking assignment

- The <= token represents a non-blocking assignment</p>
- Evaluated and assigned in two steps: The right-hand side is evaluated immediately
- ➤ The assignment to the left-hand side is postponed until other evaluations in the current time step are completed
- Execution flow within the procedure continues until a timing control is encountered (flow is not blocked)
- This example will work. Why?
 - //swap bytes in word
 - always @(posedge clk)
 - begin
 - word[15:8] <= word[7:0];
 - word[7:0] <= word[15:8];
 - end

CSE370 - III - Working with Combinational Logic

43

Driving a simulation through a "testbench"

```
module testbench (x, y);
                                    2-bit vector
  output
                  x, y;
  reg [1:0]
                  cnt;
                                    initial block executed
  initial begin -
                                    only once at start
    cnt = 0;
                                    of simulation
    repeat (4) begin
       #10 cnt = cnt + 1;
       $display ("@ time=%d, x=%b, y=%b, cnt=%b",
         $time, x, y, cnt); end
    #10 $finish; <
                                          print to a console
  end
  assign x = cnt[1];
                                     directive to stop
  assign y = cnt[0];
                                     simulation
endmodule
```

CSE370 - III - Working with Combinational Logic

Complete simulation

Instantiate stimulus component and device to test in a schematic

CSE370 - III - Working with Combinational Logic

45

Comparator example

```
module Compare1 (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);
endmodule
```

CSE370 - III - Working with Combinational Logic

More complex behavioral model

```
module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
            n0, n1, n2, n3, n4, n5, n6, n7, self;
  input
  output
             out;
  reg
             out;
  reg [7:0] neighbors;
  reg [3:0] count;
  reg [3:0] i;
  assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};
  always @(neighbors or self) begin
    count = 0;
    for (i = 0; i < 8; i = i+1) count = count + neighbors[i];</pre>
    out = (count == 3);
    out = out | ((self == 1) & (count == 2));
  end
endmodule
                     CSE370 - III - Working with Combinational Logic
```

Hardware description languages vs. programming languages

- Program structure
 - instantiation of multiple components of the same type
 - specify interconnections between modules via schematic
 - hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)
- Assignment
 - continuous assignment (logic always computes)
 - propagation delay (computation takes time)
 - timing of signals is important (when does computation have its effect)
- Data structures
 - size explicitly spelled out no dynamic structures
 - no pointers
- Parallelism
 - hardware is naturally parallel (must support multiple threads)
 - assignments can occur in parallel (not just sequentially)

CSE370 - III - Working with Combinational Logic

Hardware description languages and combinational logic

- Modules specification of inputs, outputs, bidirectional, and internal signals
- Continuous assignment a gate's output is a function of its inputs at all times (doesn't need to wait to be "called")
- Propagation delay- concept of time and delay in input affecting gate output
- Composition connecting modules together with wires
- Hierarchy modules encapsulate functional blocks

CSE370 - III - Working with Combinational Logic

10

Working with combinational logic summary

- Design problems
 - filling in truth tables
 - incompletely specified functions
 - simplifying two-level logic
- Realizing two-level logic
 - NAND and NOR networks
 - networks of Boolean functions and their time behavior
- Time behavior
- Hardware description languages
- Later
 - combinational logic technologies
 - more design case studies

CSE370 - III - Working with Combinational Logic