Combinational logic

- Number Representations
- Basic logic
 - Boolean algebra, proofs by re-writing, proofs by perfect induction
 - logic functions, truth tables, and switches
 - □ NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Logic realization
 - two-level logic and canonical forms
 - incompletely specified functions
- Simplification
 - uniting theorem
 - grouping of terms in Boolean functions
- Alternate representations of Boolean functions
 - cubes
 - Karnaugh maps

CSE370 - II - Combinational Logic

Digital

- Digital = discrete
 - □ Binary codes (example: BCD)
 - Decimal digits 0-9
 - DNA nucleotides
- Binary codes
 - Represent symbols using binary digits (bits)
- Digital computers:
 - □ I/O is digital
 - ASCII, decimal, etc.
 - Internal representation is binary
 - Process information in bits

Decimal	BCD
Symbols	<u>Code</u>
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

CSE370 - II - Combinational Logic

_

The basics: Binary numbers

- Bases we will use
 - □ Binary: Base 2
 - Octal: Base 8
 - Hexadecimal: Base 16
- Positional number system

$$101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

- $= 63_8 = 6 \times 8^1 + 3 \times 8^0$
- \triangle A1₁₆= $10 \times 16^1 + 1 \times 16^0$
- Addition and subtraction

$$\begin{array}{ccc}
1011 & 1011 \\
+ 1010 & -0110 \\
\hline
10101 & 0101
\end{array}$$

CSE370 - II - Combinational Logic

Binary → hex/decimal/octal conversion

- Conversion from binary to octal/hex
 - Binary: 10011110001
 - Octal: 10 | 011 | 110 | 001=2361₈
 - Hex: 100 | 1111 | 0001=4F1₁₆
- Conversion from binary to decimal
 - $101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 5_{10}$
 - \Box 63.4₈ = 6×8¹ + 3×8⁰ + 4×8⁻¹ = 51.5₁₀
 - \Box A1₁₆= 10×16¹ + 1×16⁰ = 161₁₀

CSE370 - II - Combinational Logic

.

Decimal→ binary/octal/hex conversion

	<u>Bin</u>	<u>ary</u>			<u>Oc</u>	<u>tal</u>
	Quotient	Remainder		(<u>Quotient</u>	Remainder
56÷2=	28	0	56÷8	3=	7	0
28÷2=	14	0	7÷8=	=	0	7
14÷2=	7	0				
7÷2=	3	1				
3÷2=	1	1	56 ₁₀ =	=11	1000_{2}	
$1 \div 2 =$	0	1	5610=	=70) ₈	

- Why does this work?
 - \sim N=56₁₀=111000₂
 - Q=N/2=56/2=111000/2=11100 remainder 0
- Each successive divide liberates an LSB

CSE370 - II - Combinational Logic

5

Number systems

- How do we write negative binary numbers?
- Historically: 3 approaches
 - Sign-and-magnitude
 - Ones-complement
 - Twos-complement
- For all 3, the most-significant bit (msb) is the sign digit
 - □ 0 = positive
 - □ 1 = negative
- Learn twos-complement
 - Simplifies arithmetic
 - Used almost universally

CSE370 - II - Combinational Logic

Sign-and-magnitude

- The most-significant bit (msb) is the sign digit
 - \bigcirc 0 \equiv positive
 - □ 1 = negative
- The remaining bits are the number's magnitude
- Problem 1: Two representations for zero
 - 0 = 0000 and also -0 = 1000
- Problem 2: Arithmetic is cumbersome

Add			Subtract			Co	Compare and subtract		
	4	0100	4	0100	0100	- 4	1100	1100	
	+ 3	+ 0011	- 3	+ 1011	- 0011	+ 3	+ 0011	- 0011	
	= 7	= 0111	= 1	≠ 1111	= 0001	- 1	≠ 1111	= 1001	

CSE370 - II - Combinational Logic

Ones-complement

- Negative number: Bitwise complement positive number
 - $0011 \equiv 3_{10}$
 - $1100 \equiv -3_{10}$
- Solves the arithmetic problem

Add		Invert, add	l, add carry	Inver	Invert and add	
4	0100	4	0100	- 4	1011	
+ 3	+ 0011	- 3	+ 1100	+ 3	+ 0011	
= 7	= 0111	= 1	1 0000	- 1	1110	
		add carry:	+1			
			= 0001			

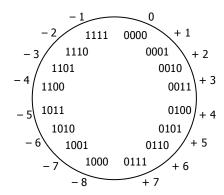
- Remaining problem: Two representations for zero
 - 0 = 0000 and also -0 = 1111

CSE370 - II - Combinational Logic

.

Twos-complement

- Negative number: Bitwise complement plus one
 - □ 0011 ≡ 3₁₀
 - $1101 \equiv -3_{10}$
- Number wheel
- Only one zero!
- msb is the sign digit
 - $0 \equiv \text{positive}$
 - □ 1 = negative



CSE370 - II - Combinational Logic

9

Twos-complement (con't)

- Complementing a complement

 the original number
- Arithmetic is easy
 - □ Subtraction = negation and addition
 - Easy to implement in hardware

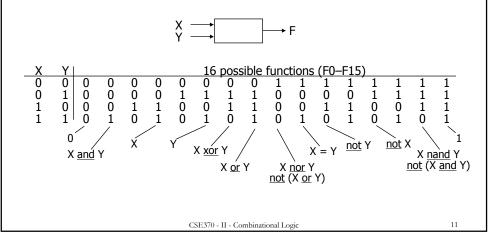
Add		Invert a	and add	Invert and add		
4	0100	4	0100	- 4	1100	
+ 3	+ 0011	- 3	+ 1101	+ 3	+ 0011	
= 7	= 0111	= 1	1 0001	- 1	1111	
		drop carry	= 0001			

CSE370 - II - Combinational Logic

4.0

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - □ in general, there are 2**(2**n) functions of n inputs



Cost of different logic functions

- Different functions are easier or harder to implement
 - each has a cost associated with the number of switches needed
 - 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
 - □ X (F3) and Y (F5): require 0 switches, output is one of inputs
 - □ X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
 - X nor Y (F4) and X nand Y (F14): require 4 switches
 - □ X or Y (F7) and X and Y (F1): require 6 switches
 - \supset X = Y (F9) and X \oplus Y (F6): require 16 switches
 - thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

CSE370 - II - Combinational Logic

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - For example, implementing X and Y is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
 - NOT is just a NAND or a NOR with both inputs tied together

Χ	Υ	X nor Y	Χ	Υ	X nand Y
0	0	1	0	0	1
1	1	0	1	1	0

 and NAND and NOR are "duals", that is, its easy to implement one using the other

$$\begin{array}{lll} X \ \underline{nand} \ Y & \equiv & \underline{not} \ (\ (\underline{not} \ X) \ \underline{nor} \ (\underline{not} \ Y) \) \\ X \ \underline{nor} \ Y & \equiv & \underline{not} \ (\ (\underline{not} \ X) \ \underline{nand} \ (\underline{not} \ Y) \) \end{array}$$

- But lets not move too fast . . .
 - lets look at the mathematical foundation of logic

CSE370 - II - Combinational Logic

13

An algebraic structure

- An algebraic structure consists of
 - a set of elements B
 - binary operations { + , }
 - and a unary operation { '}
 - such that the following axioms hold:
 - 1. the set B contains at least two elements: a, b

```
2. closure: a + b is in B a \cdot b is in B 3. commutativity: a + b = b + a a \cdot b = b \cdot a
```

4. associativity:
$$a + (b + c) = (a + b) + c$$
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

5. identity:
$$a + 0 = a$$
 $a \cdot 1 = a$

6. distributivity:
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

7. complementarity:
$$a + a' = 1$$
 $a \cdot a' = 0$

CSE370 - II - Combinational Logic

Boolean algebra

- Boolean algebra
 - $B = \{0, 1\}$
 - variables
 - □ + is logical OR, is logical AND
 - □ 'is logical NOT
- All algebraic axioms hold

CSE370 - II - Combinational Logic

15

Logic functions and Boolean algebra

 Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •

X	Y	X • Y	X	Y	X' 1 1 0	2
0	0 1 0 1	0	0	0	1	
0	1	0	0	1	1	:
1	0	0	1	0	0	1
1	1	1	1	1	0	1

X				X • Y	X′ • Y′	(X • Y) + (X′ • Y′)
0	0	1	1	0	1	1	
0	1	1	0	0	0	0	(V.V) (V.V) V-V
1	0	0	1	0	0	0	$(X \bullet Y) + (X' \bullet Y') \equiv X = Y$
1	1	1 1 0 0	0	1	0	1	

Boolean expression that is true when the variables X and Y have the same value and false, otherwise

X, Y are Boolean algebra variables

CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra

1.
$$X + 0 = X$$

2.
$$X + 1 = 1$$

2D.
$$X \cdot 0 = 0$$

idempotency:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

involution:

4.
$$(X')' = X$$

complementarity:

5.
$$X + X' = 1$$

5D.
$$X \cdot X' = 0$$

commutativity:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

associativity:

7.
$$(X + Y) + Z = X + (Y + Z)$$
 7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra (cont'd)

distributivity:

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$
 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

uniting:

9.
$$X \cdot Y + X \cdot Y' = X$$

9D.
$$(X + Y) \cdot (X + Y') = X$$

absorption:

10.
$$X + X \cdot Y = X$$

10D.
$$X \cdot (X + Y) = X$$

11.
$$(X + Y') \cdot Y = X \cdot Y$$

11D.
$$(X \cdot Y') + Y = X + Y$$

factoring:

12.
$$(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$$

12D.
$$X \cdot Y + X' \cdot Z = (X + Z) \cdot (X' + Y)$$

concensus:

13.
$$(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z$$

13.
$$(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = 13D. (X + Y) \cdot (Y + Z) \cdot (X' + Z) = X \cdot Y + X' \cdot Z \qquad (X + Y) \cdot (X' + Z)$$

Axioms and theorems of Boolean algebra (cont'd)

de Morgan's:

14.
$$(X + Y + ...)' = X' \cdot Y' \cdot ...$$
 14D. $(X \cdot Y \cdot ...)' = X' + Y' + ...$

generalized de Morgan's:

15.
$$f'(X_1, X_2, ..., X_n, 0, 1, +, \bullet) = f(X_1, X_2, ..., X_n, 1, 0, \bullet, +)$$

establishes relationship between • and +

CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra (cont'd)

- Duality
 - a dual of a Boolean expression is derived by replacing
 - by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 - any theorem that can be proven is thus also proven for its dual!
 - a meta-theorem (a theorem about theorems)
- duality:

generalized duality:

17.
$$f(X_1, X_2, ..., X_n, 0, 1, +, \bullet) \Leftrightarrow f(X_1, X_2, ..., X_n, 1, 0, \bullet, +)$$

- Different than deMorgan's Law
 - this is a statement about theorems
 - this is not a way to manipulate (re-write) expressions

0000000 11 0 11 1 11 1

Proving theorems (rewriting)

- Using the axioms of Boolean algebra:
 - \Box e.g., prove the theorem: $X \cdot Y + X \cdot Y' = X$

distributivity (8) $X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$ complementarity (5) $X \cdot (Y + Y') = X \cdot (1)$ identity (1D) $X \cdot (1) = X \checkmark$

 \Box e.g., prove the theorem: $X + X \cdot Y = X$

CSE370 - II - Combinational Logic

21

Activity

- Prove the following using the laws of Boolean algebra:
 - $(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z$

CSE370 - II - Combinational Logic

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
 - e.g., de Morgan's:

 $(X + Y)' = X' \bullet Y'$ NOR is equivalent to AND with inputs complemented

Χ	Υ	Χ'	Y	(X + Y)'	X′ • Y′
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

 $(X \bullet Y)' = X' + Y'$ NAND is equivalent to OR with inputs complemented

Χ	Υ	Χ'	Y	(X • Y)'	X' + Y'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

CSE370 - II - Combinational Logic

22

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

f	√	Co	ut C	in }√	\mathcal{T}	
	A B	A B	A B	A B	A B	
_	S	S	S	S	S	

Α	В	Cin	Cout	S	
0	0	0	0	0	
0	Ų	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

S = A' B' Cin + A' B Cin' + A B' Cin' + A B CinCout = A' B Cin + A B' Cin + A B Cin' + A B Cin

SE370 - II - Combinational Logic

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify Boolean expressions
 - e.g., full adder's carry-out function (same rules apply to any function)

```
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin +
        = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin +
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
        = B Cin + A Cin + A B (Cin' + Cin)
        = B Cin + A Cin + A B (1)
                                                adding extra terms
        = B Cin + A Cin + A B
                                               creates new factoring
                                                   opportunities
```

CSE370 - II - Combinational Logic

Activity

• Fill in the truth-table for a circuit that checks that a 4-bit number is divisible by 2, 3, or 5

X8	X X	4 X2	2 X1	By2	2 By3	By5
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0

Write down Boolean expressions for By2, By3, and By5

CSE370 - II - Combinational Logic

Activity

CSE370 - II - Combinational Logic

From Boolean expressions to logic gates

$$\begin{array}{c|c} X & Y \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$

From Boolean expressions to logic gates (cont'd)

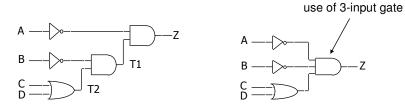
- - XNOR X = Y X = Y X = Y X = Y X = Y X = X

CSE370 - II - Combinational Logic

29

From Boolean expressions to logic gates (cont'd)

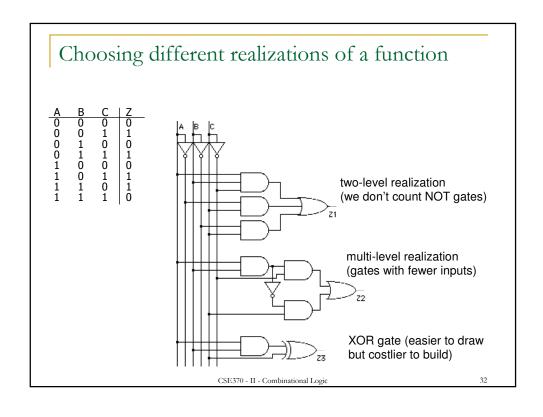
- More than one way to map expressions to gates
 - e.g., $Z = A' \cdot B' \cdot (C + D) = (A' \cdot (B' \cdot (C + D)))$ $\frac{T2}{T1}$



CSE370 - II - Combinational Logic

Waveform view of logic functions Just a sideways truth table but note how edges don't line up exactly it takes time for a gate to switch its output! time Not (X & Y) X Y Not (X & Y) X Y Not (X + Y) Not (X + Y) X xor Y Not (X xor Y) Change in Y takes time to "propagate" through gates

CSE370 - II - Combinational Logic



Which realization is best?

- Reduce number of inputs
 - literal: input variable (complemented or not)
 - can approximate cost of logic gate as 2 transitors per literal
 - why not count inverters?
 - fewer literals means less transistors
 - smaller circuits
 - fewer inputs implies faster gates
 - gates are smaller and thus also faster
 - fan-ins (# of gate inputs) are limited in some technologies
- Reduce number of gates
 - fewer gates (and the packages they come in) means smaller circuits
 - directly influences manufacturing costs

CSE370 - II - Combinational Logic

33

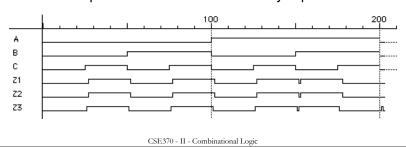
Which is the best realization? (cont'd)

- Reduce number of levels of gates
 - fewer level of gates implies reduced signal propagation delays
 - minimum delay configuration typically requires more gates
 - wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
 - automated tools to generate different solutions
 - logic minimization: reduce number of gates and complexity
 - logic optimization: reduction while trading off against delay

CSE370 - II - Combinational Logic

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - delays are different
 - □ glitches (hazards) may arise these could be bad, it depends
 - variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent



Implementing Boolean functions

- Technology independent
 - canonical forms
 - two-level forms
 - multi-level forms
- Technology choices
 - packages of a few gates
 - regular logic
 - two-level programmable logic
 - multi-level programmable logic

CSE370 - II - Combinational Logic

Canonical forms

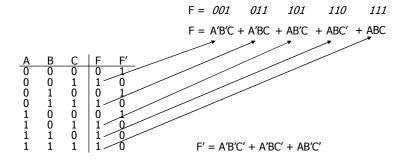
- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- Canonical forms
 - standard forms for a Boolean expression
 - provides a unique algebraic signature

CSE370 - II - Combinational Logic

27

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion



CSE370 - II - Combinational Logic

Sum-of-products canonical form (cont'd)

- Product term (or minterm)
 - ANDed product of literals input combination for which output is true
 - each variable appears exactly once, true or inverted (but not both)

	A	<u> </u>	<u> </u>	minterms	E in annual selformer
	0	0	0	A'B'C' m0	F in canonical form:
	0	0	1	A'B'C m1	$F(A, B, C) = \Sigma m(1,3,5,6,7)$
	0	1	0	A'BC' m2	= $m1 + m3 + m5 + m6 + m7$ = $A'B'C + A'BC + AB'C + ABC' + ABC$
	0	1	1	A'BC m3	= ABC + ABC + ABC + ABC + ABC
	1	0	0	AB'C' m4	canonical form ≠ minimal form
	1	0	1	AB'C m5	F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'
	1	1	0	ABC' m6	= (A'B' + A'B + AB' + AB)C + ABC'
	1	1	1	ABC m7	= ((A' + A)(B' + B))C + ABC'
				7	= C + ABC'
short-hand notation for minterms of 3 variables					= ABC' + C $= AB + C$

CSE370 - II - Combinational Logic

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

CSE370 - II - Combinational Logic

Product-of-sums canonical form (cont'd)

- Sum term (or maxterm)
 - ORed sum of literals input combination for which output is false
 - each variable appears exactly once, true or inverted (but not both)

Α	В	C	maxterms	
0	0	0	A+B+C	M0
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	М3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	М6
1	1	1	A'+B'+C'	M7
				_

F in canonical form:

F(A, B, C) =
$$\Pi M(0,2,4)$$

= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B' + C) (A' + B + C)$

canonical form ≠ minimal form

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

short-hand notation for maxterms of 3 variables

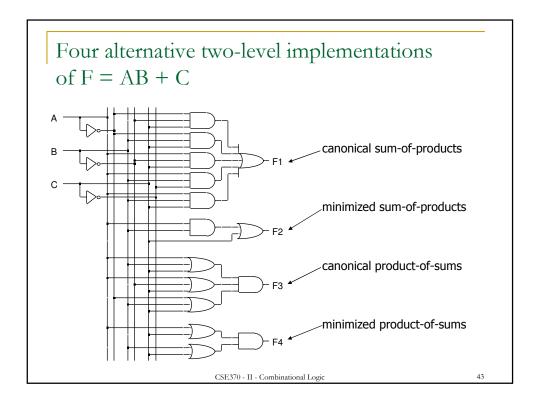
CSE370 - II - Combinational Logic

41

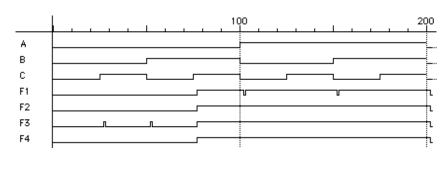
S-o-P, P-o-S, and de Morgan's theorem

- Sum-of-products
 - \Box F' = A'B'C' + A'BC' + AB'C'
- Apply de Morgan's
 - \Box (F')' = (A'B'C' + A'BC' + AB'C')'
 - \neg F = (A + B + C) (A + B' + C) (A' + B + C)
- Product-of-sums
 - \Box F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')
- Apply de Morgan's
 - $\ \, \square \ \ \, (F')' = (\ (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C)(A'+B'+C')\)'$
 - \Box F = A'B'C + A'BC + AB'C + ABC' + ABC

CSE370 - II - Combinational Logic



- Waveforms are essentially identical
 - except for timing hazards (glitches)
 - delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)



SE370 - II - Combinational Logic

Mapping between canonical forms

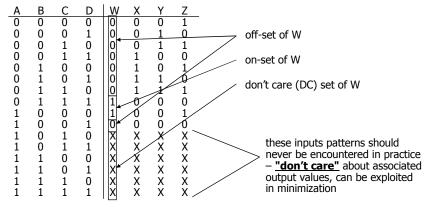
- Minterm to maxterm conversion
 - use maxterms whose indices do not appear in minterm expansion
 - \Box e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - use minterms whose indices do not appear in maxterm expansion
 - \Box e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F'
 - use minterms whose indices do not appear
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
 - use maxterms whose indices do not appear
 - \Box e.g., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

CSE370 - II - Combinational Logic

45

Incompleteley specified functions

- Example: binary coded decimal increment by 1
 - BCD digits encode the decimal digits 0 − 9 in the bit patterns 0000 − 1001



SE370 - II - Combinational Logic

Notation for incompletely specified functions

- Don't cares and canonical forms
 - so far, only represented on-set
 - also represent don't-care-set
 - need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:

```
= Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
```

- $Z = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
- □ Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15
- \square Z = Π [M(1,3,5,7,9) D(10,11,12,13,14,15)]

CSE370 - II - Combinational Logic

47

Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
 - exploit don't care information in the process
- Algebraic simplification
 - not an algorithmic/systematic procedure
 - how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - to understand automatic tools and their strengths and weaknesses
 - ability to check results (on small examples)

CSE370 - II - Combinational Logic

The uniting theorem

- Key tool to simplification: A (B' + B) = A
- Essence of simplification of two-level logic
 - find two element subsets of the ON-set where only one variable changes its value – this single varying variable can be eliminated and a single product term used to represent both elements

$$F = A'B' + AB' = (A' + A)B' = B'$$

$$A \quad B \quad F$$

$$0 \quad 0 \quad 1$$

$$0 \quad B \text{ has the same value in both on-set rows}$$

$$-B \text{ remains}$$

$$A \text{ has a different value in the two rows}$$

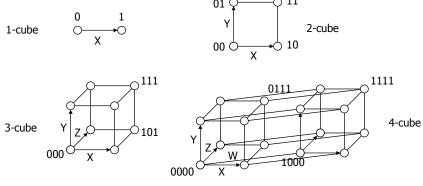
$$-A \text{ is eliminated}$$

CSE370 - II - Combinational Logic

40

Boolean cubes

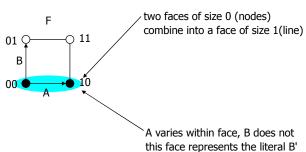
- Visual technique for indentifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"



CSE370 - II - Combinational Logic

Mapping truth tables onto Boolean cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:



ON-set = solid nodes OFF-set = empty nodes DC-set = ×'d nodes

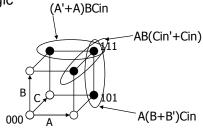
CSE370 - II - Combinational Logic

51

Three variable example

Binary full-adder carry-out logic

Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
			'



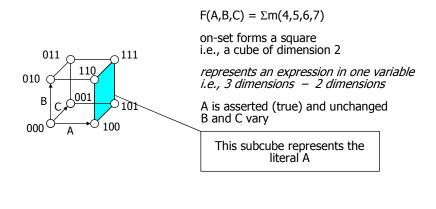
the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout = BCin+AB+ACin

CSE370 - II - Combinational Logic

Higher dimensional cubes

Sub-cubes of higher dimension than 2



CSE370 - II - Combinational Logic

--

m-dimensional cubes in a n-dimensional Boolean space

- In a 3-cube (three variables):
 - a 0-cube, i.e., a single node, yields a term in 3 literals
 - □ a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
 - an m-subcube within an n-cube (m < n) yields a term with n m literals

CSE370 - II - Combinational Logic

Karnaugh maps

- Flat map of Boolean cube
 - wrap-around at edges
 - hard to draw and visualize for more than 4 dimensions
 - virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
 - guide to applying the uniting theorem
 - on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

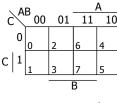
Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

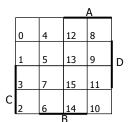
CSE370 - II - Combinational Logic

--

Karnaugh maps (cont'd)

- Numbering scheme based on Gray-code
 - □ e.g., 00, 01, 11, 10
 - only a single bit changes in code for adjacent map cells





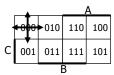
13 = 1101= ABC'D

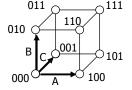
CSE370 - II - Combinational Logic

-

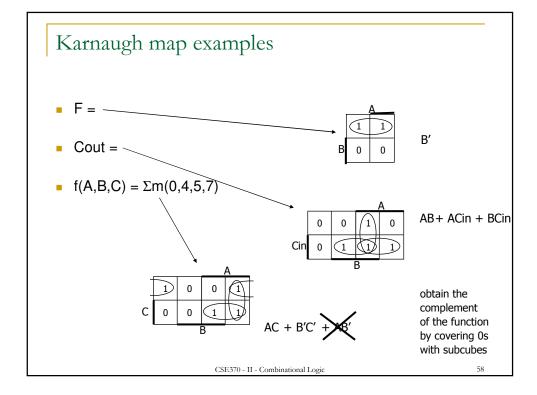
Adjacencies in Karnaugh maps

- Wrap from first to last column
- Wrap top row to bottom row

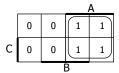




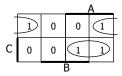
CSE370 - II - Combinational Logic



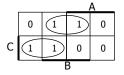
More Karnaugh map examples



$$G(A,B,C) = A$$



$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$



F' simply replace 1's with 0's and vice versa F'(A,B,C) = Σ m(1,2,3,6)= BC' + A'C

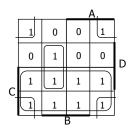
CSE370 - II - Combinational Logic

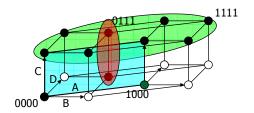
50

Karnaugh map: 4-variable example

• $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$F = C + A'BD + B'D'$$





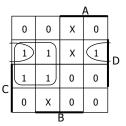
find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

CSE370 - II - Combinational Logic

.

Karnaugh maps: don't cares

- $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - without don't cares
 - f = A'D + B'C'D



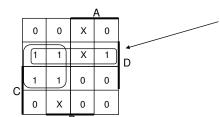
CSE370 - II - Combinational Logic

Karnaugh maps: don't cares (cont'd)

- $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - $\Box f = A'D + B'C'D$ □ f = A'D + C'D

without don't cares

with don't cares



by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

don't cares can be treated as 1s or 0s depending on which is more advantageous

CSE370 - II - Combinational Logic

Activity

• Minimize the function $F = \Sigma m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)$

CSE370 - II - Combinational Logic

63

Combinational logic summary

- Logic functions, truth tables, and switches
 - □ NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
 - $\hfill \square$ proofs by re-writing and perfect induction
- Gate logic
 - networks of Boolean functions and their time behavior
- Canonical forms
 - two-level and incompletely specified functions
- Simplification
 - a start at understanding two-level simplification
- Later
 - automation of simplification
 - multi-level logic
 - time behavior
 - hardware description languages
 - design case studies

CSE370 - II - Combinational Logic