Overview ◆ Last lecture ■ Summary of 2-level combinational logic ■ Class example: A 4-bit prime-number detector ■ Quiz ◆ Today ■ Timing diagrams ■ Multilevel logic ✔ Multilevel NAND/NOR conversion ✔ AOI and OAI gates ■ Hazards

CSE370, Lecture 8

Multilevel logic ◆ Basic idea: Simplify logic using >2 gate levels ■ Time—space (speed versus gate count) tradeoff ◆ Two-level logic usually ■ Has smaller delays (faster circuits) ■ But more gates and more wires (more circuit area) ■ Sometimes has large fan-ins (slow) ■ Easier to eliminate hazards ◆ Multilevel logic usually ■ Has less gates (smaller circuits) ■ But can be slower (more gate delays) ■ Harder to eliminate hazards

Issues with multilevel design

- ◆ No global definition of "optimal" multilevel circuit
 - Optimality depends on user-defined goals
 - Synthesize an implementation that meets design goals
- Synthesis requires CAD-tool help
 - No simple hand methods like K-maps
 - CAD tools manipulate Boolean expressions

 - ✔ Factoring, decomposition, etc.
 Covered in more detail in CSE467

CSE370, Lecture 8

Multilevel logic summary

- Advantages over 2-level logic
 - Smaller circuits
 - Reduced fan-in
 - Less wires
- Disadvantages w.r.t 2-level logic
 - More difficult design
 - Less powerful optimizing tools
 - Dynamic hazards
- What you should know for CSE370
 - The basic multilevel idea
 - Multilevel NAND/NAND and NOR/NOR conversion
 - AOI gates

CSE370, Lecture 8

Hazards/glitches

- Hazards/glitches: Undesired output switching
 - Occurs when different pathways have different delays
 - Wastes power; causes circuit noise
 - Dangerous if logic makes a decision while output is unstable
 - Dangerous if using asynchronous circuits
- Solutions
 - Design hazard-free circuits
 - **∠** Difficult when logic is multilevel
 - Wait until signals are stable
 - Use synchronous circuits

CSE370, Lecture 8

Types of hazards

- ◆ Static 1-hazard
 - Output should stay logic 1
 - Gate delays cause brief glitch to logic 0

- Static 0-hazard
 - Output should stay logic 0
 - Gate delays cause brief glitch to logic 1

- Dynamic hazards
 - Output should toggle cleanly
 - Gate delays cause multiple transitions

CSE370, Lecture 8

Static hazards

- Occur when a literal and its complement momentarily assume the same value
 - Through different paths with different delays
 - Causes an (ideally) static output to glitch

CSE370, Lecture 8

Dynamic hazards

- Occur when a literal assumes multiple values
 - Through different paths with different delays
 - Causes an output to toggle multiple times

CSE370, Lecture 8

Eliminating static hazards

- ◆ In 2-level logic circuits
 - Assuming single-bit changes
- ◆ Key idea: Glitches happen when a changing input spans separate k-map encirclements
 - Example: 1101 to 0101 change can cause a static-1 glitch

Summary of hazards

- ◆ We can eliminate static hazards in 2-level logic
 - For single-bit changes
 - Eliminating static hazards also eliminates dynamic hazards
- ◆ Hazard are a difficult problem
 - Multiple-bit changes in 2-level logic are hard
 Static hazards in multilevel logic are harder

 - Dynamic hazards in multilevel logic are harder yet
- ◆ CAD tools and simulation/testing are indispensable
 - Test vectors probe a design for hazards

CSE370, Lecture 8

21

Eliminating static hazards (con't)

- ◆ Solution: Add redundant k-map encirclements
 - Ensure that all single-bit changes are covered
 - First eliminate static-1 hazards: Use SOP form

Still need to eliminate static-0 hazards: Use POS form

CSE370, Lecture 8