Overview

Last lecture
= Incompletely specified functions
= Design examples
= k-maps for POS minimization

¢ Today
n Verilog
& Structural constructs
¥ Describing combinational circuits

CSE370, Lecture 8

Ways of specifying circuits

& Schematics
= Structural description
= Describe circuit as interconnected elements
& Build complex circuits using hierarchy
¥ Large circuits are unreadable

& HDLs
= Hardware description languages
« Not programming languages
« Parallel languages tailored to digital design
= Synthesize code to produce a circuit

CSE370, Lecture 8

Hardware description languages (HDLs)

& Abel (~1983)
n Developed by Data-1/0
= Targeted to PLDs
= Limited capabilities (can do state machines)

Verilog (~1985)
n Developed by Gateway (now part of Cadence)
= Similar to C
= Moved to public domain in 1990

¢ VHDL (~1987)
= DoD sponsored
= Similar to Ada

CSE370, Lecture 8

Verilog versus VHDL

+ Both “IEEE standard” languages
& Most tools support both

Verilog is “simpler”
» Less syntax, fewer constructs
& VHDL is more structured

= Can be better for large, complex systems
» Better modularization

CSE370, Lecture 8

Simulation versus synthesis

& Simulation
= “Execute” a design to verify correctness

& Synthesis
= Generate a netlist from HDL code

HDL

description

execution”,

functional functional/timing
validation validation

circuit

CSE370, Lecture 8

Simulation versus synthesis (con't)

+ Simulation
= Models what a circuit does
« Multiply is “*”, ignoring implementation options
= Can include static timing
= Allows you to test design options

& Synthesis
= Converts your code to a netlist
¥ Can simulate synthesized design
» Tools map your netlist to hardware

& Verilog and VHDL simulate and synthesize
m CSE370: Learn simulation
m CSE467: Learn synthesis

CSE370, Lecture 8

Simulation

& You provide an environment
= Using non-circuit constructs
« Read files, print, control simulation

= Using Verilog simulation code . -
€ A “test fixture” Note: We will ignore

timing and test benches
until next Verilog lecture

Simulation

Test Fixture Circuit D
(

FYYVYY
YVYVY

CSE370, Lecture 8 7

Levels of abstraction

Verilog supports 4 description levels
Switch

| |
= Gate
structural
= Dataflow >

| |

Algorithmic > behavioral
& Can mix & match levels in a design

Designs that combine dataflow and algorithmic
constructs and synthesis are called RTL
n Register Transfer Level

CSE370, Lecture 8 8

Structural versus behavioral Verilog

Structural
n Describe explicit circuit elements
= Describe explicit connections between elements
¥ Connections between logic gates
= Just like schematics, but using text

& Behavioral
= Describe circuit as algorithms/programs
« What a component does
« Input/output behavior
= Many possible circuits could have same behavior
¥ Different implementations of a Boolean function

CSE370, Lecture 8 9

Verilog tips

¢ Do not write C-code
= Think hardware, not algorithms
¥ Verilog is inherently parallel
« Compilers don't map algorithms to circuits well

& Do describe hardware circuits
= First draw a dataflow diagram
= Then start coding

& References
= Tutorial and reference manual are here:
= http://www.cs.washington.edu/education/courses/370/03sp/h
tml/compinfo.html

CSE370, Lecture 8 10

Basic building blocks: Modules

Instanced into a design

« Never called
Illegal to nest module defs.
Modules execute in parallel
Names are case sensitive
// for comments

Modules are circuit components

= Module has ports
¥ External connections
€ A,B,C,X,Y in example
= Port types
¥ input
& output
inout (tristate)

Name can't begin with a number
Use wires for connections
and, or, notare keywords
All keywords are lower case
Gate declarations (and, or, etc)
« List outputs first
« Inputs second

CSE370, Lecture 8

// first simple example
module smpl (X,Y,A,B,C);

input A,B,C;

output X,Y;

wire E

and gl(E,A,B);

not g2(Y,C);

or g3(X,E,Y);
endmodule

= Use assign statements for
Boolean expressions
“and < &
Kors |
gnot < ~

CSE370, Lecture 8

// previous example as a
// Boolean expression
module smpl2 (X,Y,A,B,C);
input A,B,C;
output X,Y;

assign X = (A&B) |~C;
assign Y = ~C;
endmodule

Structural Verilog

module xor_gate (out,a,b):

input a,b;
output out; 8 basic gates (keywords):
wire abar, bbar, tl, t2; and, or, nand, nor
ot inva (abar,a); buf, not, xor, xnor
not invb (bbar,b); ! 4 ’
and andl (tl,abar,b);
and and2 (t2,bbar,a);
or orl (out,tl,t2);
endmodule
a
b
CSE370, Lecture 8 13

Behavioral Verilog

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);

input [3:0] A;

input [3:0] B;

output [3:0] SUM;

output OVER;

assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];
endmodule

“[3:0] A” is a 4-wire bus labeled “A”
Bit 3 is the MSB
Bit 0 is the LSB

Can also write “[0:3] A” Buses are implicitly connected

Bit 0 is the MSB If you write BUS[3:2], BUS[1:0]

Bit 3 is the LSB They become part of BUS[3:0]
CSE370, Lecture 8 15
Numbers
& Format: <sign><size><base format><number>
* 14

= Decimal number

& —4bl1

= 4-bit 2's complement binary of 0011 (is 1101)

4 12'b0000_0100_0110
= 12 bit binary number (_is ignored)

+ 3'h046
= 3-digit (12-bit) hexadecimal number

Verilog values are unsigned
= C[4:0] = A[3:0] + B[3:0];
¥ if A= 0110 (6) and B = 1010(-6), then C = 10000 (70t 00000)
¥ B is zero-padded, not sign-extended

CSE370, Lecture 8 17

& Describe circuit behavior A —>]
X . — Sum
= Not implementation B —»| Adder Cout
Cin —»|
module full addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {cout, Sum} = A + B + Cin;
endmodule
{Cout, Sum} is a concatenation
CSE370, Lecture 8 14
Data types
Values on a wire
= 0, 1, x(don't care), z (tristate or unconnected)
& Vectors
= A[3:0] vector of 4 bits: A[3], A[2], A[1], A[0]
¥ Unsigned integer value
¥ Indices must be constants
= Concatenating bits/vectors
¥ e.g. sign extend
€B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
€B[7:0] = {4{A[3]}, A[3:01};
m Style: Use a[7:0] = b[7:0] +c;
Not a=b+g
» Legal syntax: C = &A[6:7]; // logical and of bits 6 and 7 of A
CSE370, Lecture 8 16
Operators
Opucr | Moms | rmctoneGrove S
0 bitseloct or por-selec - oo ham o aqual o Relaonel
9] parenthesis logical equality Equality
' logicol negation Logieal logical inequality Equality
H negaten Biwise caso cqualiy Eaualiy
1 Redudtion case inequality Equality
= Reducton iine AND s
Cnorn | reducron XNOR Reducon | BisexoR Bivise
! oy o v Moo bit-vise OR Bivise
{ concatenation Concatenation a& logical AND Logical
[replication Replication il logical OR Logical
: ey po— » conditonsl Condiional
/ dide Arihmetic
% modulos Arihmetic
+ binary plus Arithmetic L.
binary minus Arithmetic S|m||ar to C Operators
P it eh swi
s it right shi
CSE370, Lecture 8 18

Continuous assignment

& Assignment is continuously evaluated
= Corresponds to a logic gate
= Assignments execute in parallel
Boolean operators

/ (~ for bit-wise negation)
X | (Y & ~2);

bits can assume four values

4bo1xx; < (0,1,%2)

. CI15:0] = 4'hOOEE; variables can be n-bits wide
assign 0= P (MSB:LSB)

assign A =

assign B[3:0] =

assign #3 {Cout, Sum([3:0]} = A[3:0] + B[3:0] + Cin;

arithmetic operator
Gate delay (used by simulator) multiple assignment (concatenation)

CSE370, Lecture 8 19

Example: A comparator

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);
endmodule

Top-down design and bottom-up design are both okay
= module ordering doesn’t matter
= because modules execute in parallel

CSE370, Lecture 8 20

Comparator example (con't)

// Make a 4-bit comparator from 4 1-bit comparators

module Compared (Equal, Alarger, Blarger, A4, Bd);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, el, e2, e3, Al0, All, Al2, Al3, B10, Bll, Bl2, B13;

Comparel cp0(e0, A10, B10, A4[0], B4[0]);
Comparel cpl(el, All, B1l, A4[1], B4[1]);
Comparel cp2(e2, Al2, B2, A4([2], B4[2]);
Comparel cp3(e3, Al3, B13, A4([3], B4[31,);

assign Equal = (e0 & el & e2 & e3);
assign Alarger = (Al3 | (Al2 & e3) |
(All & e3 & e2) |
(A10 & e3 & e2 & el));
assign Blarger = (~Alarger & ~Equal);
endmodule

CSE370, Lecture 8 21

Functions

Use functions for complex combinational logic

module and_gate (out, inl, in2);
input inl, in2;
output out;

assign out = myfunction(inl, in2);
function myfunction;
input inl, in2;

begin
myfunction = inl & in2;
end
endfunction Benefit:
endmodule Functlonsl force. a r(leslult)
= Compiler will fail if function
does not generate a result
CSE370, Lecture 8 2

Overview

Last lecture
n Verilog
« Structural constructs
& Describing combinational circuits

& Today
= Summary of 2-level combinational logic
= Class example: A 4-bit prime-number detector
» Quiz

CSE370, Lecture 8 23

Summary of two-level combinational-logic

Logic functions and truth tables
= AND, OR, Buf, NOT, NAND, NOR, XOR, XNOR
= Minimal set

& Axioms and theorems of Boolean algebra
= Proofs by re-writing
= Proofs by perfect induction (fill in truth table)

& Gate logic
= Networks of Boolean functions
= NAND/NOR conversion and de Morgan’s theorem

4 Canonical forms
= Two-level forms
= Incompletely specified functions (don't cares)
& Simplification
= Two-level simplification (K-maps)
CSE370, Lecture 8 24

Solving combinational design problems

& Step 1: Understand the problem
» Identify the inputs and outputs
= Draw a truth table

& Step 2: Simplify the logic
= Draw a K-map
n Write a simplified Boolean expression
« SOP or POS
¥ Use don't cares

& Step 3: Implement the design
= Logic gates and/or Verilog

CSE370, Lecture 8

