Overview

& Last lecture
= Latches
= Flip-flops
¥ Edge-triggered D
« Master-slave
= Timing diagrams

& Today
= Sequential Verilog

CSE370, Lecture 16 1

Variables

* wire
= Connects components together

& reg
= Saves a value
& Part of a behavioral description
= Does NOT necessarily become a register when you synthesize
« May become a wire

& The rule
= Declare a variable as reqg if it is a target of an assignment
statement
¥ Continuous assign doesn’t count

CSE370, Lecture 16 2

Sequential Verilog

& Sequential circuits: Registers & combinational logic
= Use positive edge-triggered registers
= Avoid latches and negative edge-triggered registers

Register is triggered by “posedge clk”

module register(Q, D, clock); ExamPIE: AD ﬂip_ﬂop

input D, clock;
output Q;
between clock edges
always @(posedge clock) begin
Q = D;
end
endmodule

CSE370, Lecture 16 3

always block

& A procedure that describes a circuit’s function
= Can contain multiple statements
= Can contain 7, for, while, case
= Triggers at the specified conditions
w begin/end groups statements within a/ways block

module register(Q, D, clock);
input D, clock;
output Q;
reg Q;

always @(posedge clock) begin
Q = D;
end
endmodule

CSE370, Lecture 16 4

always example

Not a real register!!
Holds assignment in
always block

module and gate(out, inl, in2);

input inl,
output out;

reg out;
The compiler will not synthesize
always @(inl or in2) begin this code to a register, because

out = inl & in2; out changes whenever in! or in2
end change. Can instead simply write
endmodule wire out, inl, in2;

and (out, inl, in2);

specifies when block is executed
i.e. triggered by changes in in1 or in2

CSE370, Lecture 16 5

Incomplete trigger or incomplete assignment

& What if you omit an input trigger (e.g. /in2)
= Compiler will insert a register to hold the state
= Becomes a sequential circuit — MOT what you want

module and_gate (out, inl, in2);
input inl, in2; A real register!! Holds out
output out; because /in2 isn't specified
reg out; in a/lways trigger

always @(inl) begin
out = inl & in2;

end
endmodule 2 rules:
1) Include all inputs in the trigger list
2) Use complete assignments
= Every path must lead to an assignment for out
= Otherwise out needs a state element
CSE370, Lecture 16 3

Assignments

& Be careful with always assignments
= Which of these statements generate a latch?

always @(c or x) begin always @(c or x) begin
if (c) begin value = x;
value = x; if (c) begin
end value = 0;
y = value; end
end y = value;
end

always @(c or x) begin
if (c)
value = 0;
else if (x)
value = 1;

end

CSE370, Lecture 16

Another way: Use functions

Functions for combinational logic
= Functions can't have state

module and gate (out, inl, in2);
input inl, in2;
output out;

assign out = myfunction(inl, in2);
function myfunction;

input inl, in2; Ben
begin

en’;"f“""“’“ = inl & in2; = Compiler will fail if function

. does not generate a result
endfunction f build a functi
endmodule =1 you build a function wrong
the circuit will not synthesize.
If you build an always block
wrong you get a register

s:
Functions force a result

CSE370, Lecture 16 8

if

& Same as C /fstatement

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel == 2’b00) Y = A;
else if (sel == 2’b01) Y = B;
else if (sel 2'bl0) Y C;
else if (sel 2'bll) Y = D;
endmodule

= Single /fstatements synthesize to multiplexers
= Nested /f/ else statements usually synthesize to logic

CSE370, Lecture 16

if (another way)

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)

if (sel[0] == 0)
if (selll] 0) Y =
else Y =

else
if (sel[1] Y =cC;
else Y = D;

endmodule
CSE370, Lecture 16 10

case

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)
case (sel)
2'b00: Y = A;

case (another way)

Y = B;
Y =C;
Y = D;

endcase case gxecutes sequentially
endmodule = FII'Stl match executes
= Don't need to break out of case
case statements synthesize to muxes

CSE370, Lecture 16

// simple 4-1 mux

module mux4 (sel, A, B, C, D, ¥);
input [1:0] sel; // 2-bit control
signal

input A, B, C, D;

output Y;

assign out = mymux(sel, A, B, C, D);
function mymux;
input [1:0] sel, A, B, C, D;
begin
case (sel)
2/b00: mymux = A;
27b01: mymux = B;
2/b10: mymux = C;
2/bll: mymux = D;

endcase
end Note: You can define a function in a file
endfunction Then /nclude it into your Verilog module
endmodule

CSE370, Lecture 16 12

default case

// simple binary encoder (inmput is 1-hot)
module encode (A, ¥);

input [7:0]1 A; // 8-bit input vector
output [2:0] Y¥; // 3-bit encoded output
reg [2:01 ¥; // target of assignment
always @(A)
case (A)
8'b00000001: Y = 0; If you omit the default, the compiler will
87b00000010: Y = 1; create a latch for Y
8'b00000100: ¥ = 2; = Either list all 256 cases
8’b00001000: ¥ = 3; = Or use a function (compiler will
8'b00010000: Y = 4; warn you of missing cases)
8/b00100000: Y = 5;
8/b01000000: Y = 6;
8/b10000000: Y = 7;

default: Y = 3'bx; // Don’t care about other cases
endcase
endmodule

CSE370, Lecture 16 13

case executes sequentially

// Priority encoder

module encode (&, ¥);

input [7:0] A; // 8-bit input vector
output [2:0] ¥; // 3-bit encoded output
reg [2:0] ¥; // target of assignment

always @(A)
case (1'b1)
A[0]: Y

All]:
Af2]:
A[3]:

Case statements execute sequentially
3; = Take the first alternative that matches

A[S5]:
Al6]:
Al7]:
default:
endcase
endmodule

Y
Y
Y
Al4]: Y
Y
Y
Y
= 3'bx; // Dom’t care when input is all 0’'s

CSE370, Lecture 16 14

for

// simple encoder
module encode (A, Y);

input [7:0] A; // 8-bit input vector

output [2:0] ¥; // 3-bit encoded output

reg [2:0] ¥; // target of assignment

integer i; // Temporary variables for program
reg [7:0] test;

always @(A) begin
test = 8b’00000001;
37bx;

i<8;i=4i+ 1) begin
test) Y = i;
test = test << 1; // Shift left, pad with 0s

end
end for statements synthesize as
endmodule cascaded combinational logic
= Verilog unrolls the loop

CSE370, Lecture 16 15

Verilog whilel repeat] forever

& while (expression) statement
= execute statement while expression is true

& repeat (expression) statement
= execute statement a fixed number of times

& forever statement
= execute statement forever

CSE370, Lecture 16 16

Blocking and non-blocking assignments

& Blocking assignments (Q = A)
m Variable is assigned immediately
= New value is used by subsequent statements

& Non-blocking assignments (Q <= A)
= Variable is assigned after all scheduled statements are executed
= Value to be assigned is computed but saved for later

& Example: Swap

always @(posedge CLK) always @(posedge CLK)
begin begin
temp = B; A <= B;
B = A; B <= A;
A = temp; end
end

CSE370, Lecture 16 17

Blocking and non-blocking assignments

reg B, C, D; reg B, C, D;
always @(posedge clk) always @(posedge clk)
begin begin
B <= A;
C <= B;
D <= C;
end

CSE370, Lecture 16 18

Swap

The following code executes incorrectly
= One block executes first
= Loses previous value of variable

always @(posedge CLK) always @(posedge CLK)
begin begin
A = B; B = A;
end end

& Non-blocking assignment fixes this
= Both blocks are scheduled by posedge CLK

always @(posedge CLK) always @(posedge CLK)
begin begin
A <= B; B <= A;
end end

CSE370, Lecture 16

Parallel versus serial execution

assign statements are implicitly parallel
= “="'means continuous assignment & A

= Example c

assign E = A & D;

assign A = B & C; E
= A and E change if B changes D

& always blocks execute in parallel
m always @ (posedge clock)

& Procedural block internals not necessarily parallel
= “="s a blocking assignment (sequential)
= “<="is a nonblocking assignment (parallel)
= Examples of procedures: always, function, etc.

CSE370, Lecture 16

Synthesis examples

a2 D_.n
wire [3:0] x, y, Zﬁl
assign apr = “a; ar0]
ass:gn y=as& ; st jD_‘jD_ apr
assion x - (a = b”\ja =
a+c:d+ a;
/\ .

4]
bli]

CSE370, Lecture 16

