
1CSE370, Lecture 24

Overview

! Last lecture
" Ant-brain FSM

! Today
" Sequential Logic Examples

2CSE370, Lecture 24

Sequential logic examples

! Basic design approach: a 4-step design process

! Hardware description languages and finite state machines

! Implementation examples and case studies
" finite-string pattern recognizer
" complex counter
" traffic light controller
" door combination lock

3CSE370, Lecture 24

General FSM design procedure

! (1) Determine inputs and outputs

! (2) Determine possible states of machine
" � state minimization

! (3) Encode states and outputs into a binary code
" � state assignment or state encoding
" � output encoding
" � possibly input encoding (if under our control)

! (4) Realize logic to implement functions for states and outputs
" � combinational logic implementation and optimization
" � choices made in steps 2 and 3 can have large effect on resulting

logic

4CSE370, Lecture 24

Finite string pattern recognizer (step 1)

! Finite string pattern recognizer
" one input (X) and one output (Z)
" output is asserted whenever the input sequence �010� has been

observed, as long as the sequence 100 has never been seen

! Step 1: understanding the problem statement
" sample input/output behavior:

X: 0 0 1 0 1 0 1 0 0 1 0 �
Z: 0 0 0 1 0 1 0 1 0 0 0 �

X: 1 1 0 1 1 0 1 0 0 1 0 �
Z: 0 0 0 0 0 0 0 1 0 0 0 �

5CSE370, Lecture 24

Finite string pattern recognizer (step 2)

! Step 2: draw state diagram
" for the strings that must be recognized, i.e., 010 and 100
" a Moore implementation

S1
[0]

S2
[0]

0

1

S3
[1]

0

S4
[0]

1

0 or 1

S5
[0]

0

0

S6
[0]

S0
[0]

reset

6CSE370, Lecture 24

Finite string pattern recognizer (step 2,
cont�d)

! Exit conditions from state S3: have recognized �010
" if next input is 0 then have �0100 = ...100 (state S6)
" if next input is 1 then have �0101 = �01 (state S2)

! Exit conditions from S1: recognizes
strings of form �0 (no 1 seen)
" loop back to S1 if input is 0

! Exit conditions from S4: recognizes
strings of form �1 (no 0 seen)
" loop back to S4 if input is 1

1
...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

10

1

reset

0 or 1S3
[1]

0

S5
[0]

0

0

S6
[0]

...1...0
10

7CSE370, Lecture 24

Finite string pattern recognizer (step 2,
cont�d)

! S2 and S5 still have incomplete transitions
" S2 = �01; If next input is 1,

then string could be prefix of (01)1(00)
S4 handles just this case

" S5 = �10; If next input is 1,
then string could be prefix of (10)1(0)
S2 handles just this case

! Reuse states as much as possible
" look for same meaning
" state minimization leads to

smaller number of bits to
represent states

! Once all states have a complete
set of transitions we have a
final state diagram

1
...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

10

1

reset

0 or 1S3
[1]

0

S5
[0]

0

0

S6
[0]

...1...0
10

...10

1

1

8CSE370, Lecture 24

module string (clk, X, rst, Q0, Q1, Q2, Z);
input clk, X, rst;
output Q0, Q1, Q2, Z;

reg state[0:2];
‘define S0 [0,0,0] //reset state
‘define S1 [0,0,1] //strings ending in ...0
‘define S2 [0,1,0] //strings ending in ...01

‘define S3 [0,1,1] //strings ending in ...010
‘define S4 [1,0,0] //strings ending in ...1
‘define S5 [1,0,1] //strings ending in ...10
‘define S6 [1,1,0] //strings ending in ...100

assign Q0 = state[0];
assign Q1 = state[1];
assign Q2 = state[2];
assign Z = (state == ‘S3);

always @(posedge clk) begin
if rst state = ‘S0;
else

case (state)

‘S0: if (X) state = ‘S4 else state = ‘S1;
‘S1: if (X) state = ‘S2 else state = ‘S1;
‘S2: if (X) state = ‘S4 else state = ‘S3;
‘S3: if (X) state = ‘S2 else state = ‘S6;

‘S4: if (X) state = ‘S4 else state = ‘S5;
‘S5: if (X) state = ‘S2 else state = ‘S6;
‘S6: state = ‘S6;
default: begin

$display (“invalid state reached”);

state = 3’bxxx;
endcase

end

endmodule

Finite string pattern recognizer (step 3)

! Verilog description including state assignment (or state encoding)

9CSE370, Lecture 24

Finite string pattern recognizer

! Review of process
" understanding problem

write down sample inputs and outputs to understand specification
" derive a state diagram

write down sequences of states and transitions for sequences to be
recognized

" minimize number of states
add missing transitions; reuse states as much as possible

" state assignment or encoding
encode states with unique patterns

" simulate realization
verify I/O behavior of your state diagram to ensure it matches

specification

10CSE370, Lecture 24

Mode Input M
0
0
1
1
1
0
0

Current State
000
001
010
110
111
101
110

Next State
001
010
110
111
101
110
111

Complex counter

! A synchronous 3-bit counter has a mode control M
" when M = 0, the counter counts up in the binary sequence
" when M = 1, the counter advances through the Gray code sequence

binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray: 000, 001, 011, 010, 110, 111, 101, 100

! Valid I/O behavior (partial)

11CSE370, Lecture 24

Complex counter (state diagram)

! Deriving state diagram
" one state for each output combination
" add appropriate arcs for the mode control

S0
[000]

S1
[001]

S2
[010]

S3
[011]

S4
[100]

S5
[101]

S6
[110]

S7
[111]

reset

0

0 0 0 0000
1

1

1
1

11

11

12CSE370, Lecture 24

Complex counter (state encoding)

! Verilog description including state encoding

module string (clk, M, rst, Z0, Z1, Z2);
input clk, X, rst;

output Z0, Z1, Z2;

reg state[0:2];
‘define S0 = [0,0,0];

‘define S1 = [0,0,1];
‘define S2 = [0,1,0];
‘define S3 = [0,1,1];
‘define S4 = [1,0,0];
‘define S5 = [1,0,1];

‘define S6 = [1,1,0];
‘define S7 = [1,1,1];

assign Z0 = state[0];

assign Z1 = state[1];
assign Z2 = state[2];

always @(posedge clk) begin
if rst state = ‘S0;

else
case (state)

‘S0: state = ‘S1;
‘S1: if (M) state = ‘S3 else state = ‘S2;

‘S2: if (M) state = ‘S6 else state = ‘S3;
‘S3: if (M) state = ‘S2 else state = ‘S4;
‘S4: if (M) state = ‘S0 else state = ‘S5;
‘S5: if (M) state = ‘S4 else state = ‘S6;
‘S5: if (M) state = ‘S7 else state = ‘S7;

‘S5: if (M) state = ‘S5 else state = ‘S0;
endcase

end

endmodule

13CSE370, Lecture 24

TS/ST

S1

TS'

�/ST

S1a

S1b

S1c

traffic light
controller

timer

TLTSST

Traffic light controller as two communicating
FSMs

! Without separate timer
" S0 would require 7 states
" S1 would require 3 states
" S2 would require 7 states
" S3 would require 3 states
" S1 and S3 have simple transformation
" S0 and S2 would require many more arcs

C could change in any of seven states

! By factoring out timer
" greatly reduce number of states

4 instead of 20
" counter only requires seven or eight states

12 total instead of 20

14CSE370, Lecture 24

module FSM(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);
output HR;
output HY;
output HG;
output FR;
output FY;
output FG;
output ST;
input TS;
input TL;
input C;
input reset;
input Clk;

reg [6:1] state;
reg ST;

`define highwaygreen 6'b001100
`define highwayyellow 6'b010100
`define farmroadgreen 6'b100001
`define farmroadyellow 6'b100010

assign HR = state[6];
assign HY = state[5];
assign HG = state[4];
assign FR = state[3];
assign FY = state[2];
assign FG = state[1];

specify state bits and codes
for each state as well as
connections to outputs

Traffic light controller FSM

! Specification of inputs, outputs, and state elements

15CSE370, Lecture 24

initial begin state = `highwaygreen; ST = 0; end

always @(posedge Clk)
begin
if (reset)

begin state = `highwaygreen; ST = 1; end
else

begin
ST = 0;
case (state)

`highwaygreen:
if (TL & C) begin state = `highwayyellow; ST = 1; end

`highwayyellow:
if (TS) begin state = `farmroadgreen; ST = 1; end

`farmroadgreen:
if (TL | !C) begin state = `farmroadyellow; ST = 1; end

`farmroadyellow:
if (TS) begin state = `highwaygreen; ST = 1; end

endcase
end

end
endmodule

Traffic light controller FSM (cont�d)

case statement
triggerred by
clock edge

16CSE370, Lecture 24

module Timer(TS, TL, ST, Clk);
output TS;
output TL;
input ST;
input Clk;
integer value;

assign TS = (value >= 4); // 5 cycles after reset
assign TL = (value >= 14); // 15 cycles after reset

always @(posedge ST) value = 0; // async reset

always @(posedge Clk) value = value + 1;

endmodule

Timer for traffic light controller

! Another FSM

17CSE370, Lecture 24

module main(HR, HY, HG, FR, FY, FG, reset, C, Clk);
output HR, HY, HG, FR, FY, FG;
input reset, C, Clk;

Timer part1(TS, TL, ST, Clk);
FSM part2(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);

endmodule

Complete traffic light controller

! Tying it all together (FSM + timer)
" structural Verilog not supported by DesignWorks (which uses

schematic)

traffic light
controller

timer

TLTSST

18CSE370, Lecture 24

machines advance in lock step
initial inputs/outputs: X = 0, Y = 0

CLK

FSM1

X

FSM2

Y

A A B

C D D

FSM 1 FSM 2

X

Y

Y==1

A
[1]

Y==0

B
[0]

Y==0

X==1

C
[0]

X==0
X==0

D
[1]

X==1
X==0

Communicating finite state machines

! One machine's output is another machine's input

19CSE370, Lecture 24

"puppet"

"puppeteer who pulls the strings"
control

data-path

status
info and
inputs

control
signal
outputs

state

Data-path and control
! Digital hardware systems = data-path + control

" datapath: registers, counters, combinational functional units (e.g., ALU),
communication (e.g., busses)

" control: FSM generating sequences of control signals that instructs
datapath what to do next

20CSE370, Lecture 24

Digital combinational lock

! Door combination lock:
" punch in 3 values in sequence and the door opens; if there is an

error the lock must be reset; once the door opens the lock must be
reset

" inputs: sequence of input values, reset
" outputs: door open/close
" memory: must remember combination or always have it available

" open questions: how do you set the internal combination?
stored in registers (how loaded?)
hardwired via switches set by user

21CSE370, Lecture 24

Implementation in software

integer combination_lock () {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value());
v1 = read_value();
if (v1 != c[1]) then error = 1;

while (!new_value());
v2 = read_value();
if (v2 != c[2]) then error = 1;

while (!new_value());
v3 = read_value();
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);
} 22CSE370, Lecture 24

resetvalue

open/closed

new

clock

Determining details of the specification

! How many bits per input value?

! How many values in sequence?

! How do we know a new input value is entered?

! What are the states and state transitions of the system?

23CSE370, Lecture 24

Digital combination lock state diagram

! States: 5 states
" represent point in execution of machine
" each state has outputs

! Transitions: 6 from state to state, 5 self transitions, 1 global
" changes of state occur when clock says its ok
" based on value of inputs

! Inputs: reset, new, results of comparisons

! Output: open/closed

closed closedclosed
C1==value

& new
C2==value

& new
C3==value

& new

C1!=value
& new C2!=value

& new
C3!=value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

24CSE370, Lecture 24

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4

Data-path and control structure

! Data-path
" storage registers for combination values
" multiplexer
" comparator

! Control
" finite-state machine controller
" control for data-path (which value to compare)

25CSE370, Lecture 24

State table for combination lock

! Finite-state machine
" refine state diagram to take internal structure into account
" state table ready for encoding

reset new equal state state mux open/closed
1 � � � S1 C1 closed
0 0 � S1 S1 C1 closed
0 1 0 S1 ERR � closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN � open
...

next

26CSE370, Lecture 24

reset new equal state state mux open/closed
1 � � � 0001 001 0
0 0 � 0001 0001 001 0
0 1 0 0001 0000 � 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 � 1
...

next

mux is identical to last 3 bits of state
open/closed is identical to first bit of state
therefore, we do not even need to implement
FFs to hold state, just use outputs

reset

open/closed

new

equal

controller

mux
control

clock

Encodings for combination lock

! Encode state table
" state can be: S1, S2, S3, OPEN, or ERR

needs at least 3 bits to encode: 000, 001, 010, 011, 100
and as many as 5: 00001, 00010, 00100, 01000, 10000
choose 4 bits: 0001, 0010, 0100, 1000, 0000

" output mux can be: C1, C2, or C3
needs 2 to 3 bits to encode
choose 3 bits: 001, 010, 100

" output open/closed can be: open or closed
needs 1 or 2 bits to encode
choose 1 bit: 1, 0

27CSE370, Lecture 24

C1 C2 C3

comparator
equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

value

equal

Data-path implementation for combination
lock

! Multiplexer
" easy to implement as combinational logic when few inputs
" logic can easily get too big for most PLDs

28CSE370, Lecture 24

C1 C2 C3

comparator equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

value

equal

+ oc

open-collector connection
(zero whenever one connection is zero,

one otherwise � wired AND)

tri-state driver
(can disconnect
from output)

Data-path implementation (cont�d)

! Tri-state logic
" utilize a third output state: �no connection� or �float�
" connect outputs together as long as only one is �enabled�
" open-collector gates can

only output 0, not 1
can be used to implement

logical AND with only wires

29CSE370, Lecture 24

In OE Out
X 0 Z
0 1 0
1 1 1

non-inverting
tri-state

buffer

100

In

OE

Out

Tri-state gates

! The third value
" logic values: �0�, �1�
" don't care: �X� (must be 0 or 1 in real circuit!)
" third value or state: �Z� � high impedance, infinite R, no connection

! Tri-state gates
" additional input � output enable (OE)
" output values are 0, 1, and Z
" when OE is high, the gate functions normally
" when OE is low, the gate is disconnected from wire at output
" allows more than one gate to be connected to the same output wire

as long as only one has its output enabled at any one time (otherwise, sparks could
fly)

In Out

OE

30CSE370, Lecture 24

when Select is high
Input1 is connected to F

when Select is low
Input0 is connected to F

this is essentially a 2:1 mux

OE

OE

FInput0

Input1

Select

Tri-state and multiplexing
! When using tri-state logic

" (1) make sure never more than one "driver" for a wire at any one time
(pulling high and low at the same time can severely damage circuits)

" (2) make sure to only use value on wire when its being driven (using a
floating value may cause failures)

! Using tri-state gates to implement an economical multiplexer

31CSE370, Lecture 24

open-collector
NAND gates

with ouputs wired together
using "wired-AND"
to form (AB)'(CD)'

Open-collector gates and wired-AND

! Open collector: another way to connect gate outputs to the same wire
" gate only has the ability to pull its output low
" it cannot actively drive the wire high (default � pulled high through resistor)

! Wired-AND can be implemented with open collector logic
" if A and B are "1", output is actively pulled low
" if C and D are "1", output is actively pulled low
" if one gate output is low and the other high, then low wins
" if both gate outputs are "1", the wire value "floats", pulled high by resistor

low to high transition usually slower than it would have been with a gate pulling high
" hence, the two NAND functions are ANDed together

32CSE370, Lecture 24

C1 C2 C3

comparatorvalue
equal

multiplexer

mux
control

4

4 4 4

4

ld1 ld2 ld3

Digital combination lock (new data-path)

! Decrease number of inputs

! Remove 3 code digits as inputs
" use code registers
" make them loadable from value
" need 3 load signal inputs (net gain in input (4*3)�3=9)

could be done with 2 signals and decoder
(ld1, ld2, ld3, load none)

