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Overview

! Last lecture
" Finished counter design

#Design example
#Self-starting counters

! Today
" Introduction to finite-state machines

#Moore versus Mealy machines
#Synchronous Mealy machines
#Example: A parity checker
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Finite state machines

! FSM: A system that visits a finite number of logically 
distinct states

! Counters are simple FSMs
" Outputs and states are identical
" Visit states in a fixed sequence

! FSMs are more complex than counting
" Outputs can depend on current state and on inputs
" State sequencing depends on current state and on inputs
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Generalized FSM model

! State variables (state vector) holds circuit state
" Stored in registers

! Combinational logic computes next state and outputs
" Next state is a function of current state and inputs
" Outputs are functions of 

#Current state (Moore machine) 
#Current state and inputs (Mealy machine)
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Moore versus Mealy machines
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Example: Moore versus Mealy

! Circuits recognize AB=10 followed by AB=01 
" What kinds of machines are they?
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Specifying outputs for a Moore machine

! Output is a function of state only
" Specify output in the state bubble
" Example: Detector for 01 or 10
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reset

current next current
reset input state state output

1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1
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Specifying outputs for a Mealy machine

! Output is a function of state and inputs
" Specify outputs on transition arcs
" Example: Detector for 01 or 10

current next current
reset input state state output
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reset/0

1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0
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Comparing Moore and Mealy machines

! Moore machines 
+ Safer do use because outputs change at clock edge
� May take additional logic to decode state into outputs

! Mealy machines
+ Typically have fewer states
+ React faster to inputs � don't wait for clock
� Asynchronous outputs can be dangerous

! We will often design synchronous Mealy machines
" Design a Mealy machine
" Then register the outputs
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Synchronous (registered) Mealy machine

! Registered state and registered outputs
" No glitches on outputs
" No race conditions between communicating machines
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FSM design

! Generalized counter design

" Counter-design procedure
1.  State diagram
2.  State-transition table
3.  Next-state logic minimization
4.  Implement the design

" FSM-design procedure
1.  State diagram and state-transition table
2.  State minimization
3.  State assignment (or state encoding)
4.  Next-state logic minimization
5.  Implement the design
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Example: A parity checker

! Serial input string
" OUT=1 if odd # of 1s in input
" OUT=0 if even # of 1s in input

Even
[0]

Odd
[1]

0

1 1

Present         Input           Next       Present
State State       Output

Even 0 Even 0
Even 1 Odd 0
Odd 0 Odd 1
Odd 1            Even 1

1.  State diagram and state-transition table

Moore-machine state diagram
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Parity checker (con�t)

2.  State minimization: Already minimized
" Need both states (even and odd)
" Use one flip-flop

3.  State assignment (or state encoding)

Present         Input          Next         Present
State State        Output

0 0 0 0
0 1 1 0
1 0 1 1
1 1             0 1 Assignment 

Even $ 0
Odd  $ 1
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Parity checker (con�t)

4.  Next-state logic minimization
" Assume D flip-flops
" Next state = (present state) XOR (present input)
" Present output = present state

5.  Implement the design
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D Q
Q

! Can map FSMs to programmable logic devices
" Macro-cell = DFF + two-level logic

! Other options: Gate arrays, semicustom ICs, etc.

Implementation

15CSE370, Lecture 21 Figure 8.1.  The general form of a sequential circuit.
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16CSE370, Lecture 21 Figure 8.2.  Sequences of input and output signals.

Clockcycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1 
z : 0 0 0 0 0 1 0 0 1 1 0 

17CSE370, Lecture 21 Figure 8.3.  State diagram of a simple sequential circuit.
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18CSE370, Lecture 21 Figure 8.4.  State table.

Present Next state Output
state w = 0 w = 1 z 

A A B 0 
B A C 0 
C A C 1 



19CSE370, Lecture 21 Figure 8.5.  A general sequential circuit.
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20CSE370, Lecture 21 Figure 8.6.  A state-assigned table.

Present 
Next state 

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1 

z 

A 00 00 01 0 

B 01 00 10 0 

C 10 00 10 1 

11 dd dd d 

21CSE370, Lecture 21 Figure 8.7.  Derivation of logic expressions.
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22CSE370, Lecture 21 Figure 8.8.  Sequential circuit derived in Figure 8.7.
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23CSE370, Lecture 21 Figure 8.29.  Verilog code for the FSM in Figure 8.3.

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] y, Y;
parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10;

// Define the next state combinational circuit
always @(w or y)

case (y)
A: if (w) Y = B;

else    Y = A;
B: if (w) Y = C;

else    Y = A;
C: if (w) Y = C;

else    Y = A;
default: Y = 2'bxx;

endcase

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0)y <= A;
elsey <= Y;

// Define output
assign z = (y == C);

endmodule

24CSE370, Lecture 21 Figure 8.29.  Re-written Verilog code for the FSM in Figure 8.3.

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] state, NextState;
parameter [2:1] stateA = 2'b00, stateB = 2'b01, stateC = 2'b10;

// Define the next state combinational circuit
always @(w or state)

case (state)
stateA : if (w)  NextState = stateB;

else NextState = stateA;
stateB : if (w)  NextState = stateC;

else NextState = stateA;
stateC : if (w)  NextState = stateC;

else NextState = stateA;
default: NextState = 2'bxx;

endcase

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0) state <= stateA;
else state <= NextState;

// Define output
assign z = (state == stateC);

endmodule


