
1CSE370, Lecture 21

Overview

! Last lecture
" Finished counter design

#Design example
#Self-starting counters

! Today
" Introduction to finite-state machines

#Moore versus Mealy machines
#Synchronous Mealy machines
#Example: A parity checker

2CSE370, Lecture 21

Finite state machines

! FSM: A system that visits a finite number of logically
distinct states

! Counters are simple FSMs
" Outputs and states are identical
" Visit states in a fixed sequence

! FSMs are more complex than counting
" Outputs can depend on current state and on inputs
" State sequencing depends on current state and on inputs

3CSE370, Lecture 21

Inputs
Outputs

Next State

Current State

output
logic

Next-state
logic

Generalized FSM model

! State variables (state vector) holds circuit state
" Stored in registers

! Combinational logic computes next state and outputs
" Next state is a function of current state and inputs
" Outputs are functions of

#Current state (Moore machine)
#Current state and inputs (Mealy machine)

4CSE370, Lecture 21

Moore versus Mealy machines

outputs

state feedback

inputs

reg

combinational
logic for
next state logic for

outputs

Moore machine
Outputs are a function

of current state

Outputs change
synchronously with

state changes

Mealy machine
Outputs depend on state

and on inputs

Input changes can cause
immediate output changes

(asynchronous)

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

5CSE370, Lecture 21

D Q
Q

D Q
Q

D Q
Q

D Q
Q

A

B

clock

out

D Q
Q

D Q
Q

A

B

clock

out

Example: Moore versus Mealy

! Circuits recognize AB=10 followed by AB=01
" What kinds of machines are they?

6CSE370, Lecture 21

Specifying outputs for a Moore machine

! Output is a function of state only
" Specify output in the state bubble
" Example: Detector for 01 or 10

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

current next current
reset input state state output

1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

7CSE370, Lecture 21

Specifying outputs for a Mealy machine

! Output is a function of state and inputs
" Specify outputs on transition arcs
" Example: Detector for 01 or 10

current next current
reset input state state output

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

8CSE370, Lecture 21

Comparing Moore and Mealy machines

! Moore machines
+ Safer do use because outputs change at clock edge
� May take additional logic to decode state into outputs

! Mealy machines
+ Typically have fewer states
+ React faster to inputs � don't wait for clock
� Asynchronous outputs can be dangerous

! We will often design synchronous Mealy machines
" Design a Mealy machine
" Then register the outputs

9CSE370, Lecture 21

Synchronous (registered) Mealy machine

! Registered state and registered outputs
" No glitches on outputs
" No race conditions between communicating machines

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

reg

10CSE370, Lecture 21

FSM design

! Generalized counter design

" Counter-design procedure
1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

" FSM-design procedure
1. State diagram and state-transition table
2. State minimization
3. State assignment (or state encoding)
4. Next-state logic minimization
5. Implement the design

11CSE370, Lecture 21

Example: A parity checker

! Serial input string
" OUT=1 if odd # of 1s in input
" OUT=0 if even # of 1s in input

Even
[0]

Odd
[1]

0

1 1

Present Input Next Present
State State Output

Even 0 Even 0
Even 1 Odd 0
Odd 0 Odd 1
Odd 1 Even 1

1. State diagram and state-transition table

Moore-machine state diagram

12CSE370, Lecture 21

Parity checker (con�t)

2. State minimization: Already minimized
" Need both states (even and odd)
" Use one flip-flop

3. State assignment (or state encoding)

Present Input Next Present
State State Output

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1 Assignment

Even $ 0
Odd $ 1

13CSE370, Lecture 21

Parity checker (con�t)

4. Next-state logic minimization
" Assume D flip-flops
" Next state = (present state) XOR (present input)
" Present output = present state

5. Implement the design

D Q

Q

CLK

Input
Output

14CSE370, Lecture 21

D Q
Q

! Can map FSMs to programmable logic devices
" Macro-cell = DFF + two-level logic

! Other options: Gate arrays, semicustom ICs, etc.

Implementation

15CSE370, Lecture 21 Figure 8.1. The general form of a sequential circuit.

Combinational
circuit

Flip-flops

Clock

Q

W
Z

Combinational
circuit

16CSE370, Lecture 21 Figure 8.2. Sequences of input and output signals.

Clockcycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1
z : 0 0 0 0 0 1 0 0 1 1 0

17CSE370, Lecture 21 Figure 8.3. State diagram of a simple sequential circuit.

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

18CSE370, Lecture 21 Figure 8.4. State table.

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

19CSE370, Lecture 21 Figure 8.5. A general sequential circuit.

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2

20CSE370, Lecture 21 Figure 8.6. A state-assigned table.

Present
Next state

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1

z

A 00 00 01 0

B 01 00 10 0

C 10 00 10 1

11 dd dd d

21CSE370, Lecture 21 Figure 8.7. Derivation of logic expressions.

w 00 01 11 10

0

1

0

1 0

y
2

y
1

Y
1

wy 1 y 2 =

w
00 01 11 10

0

1

0 d

1 d

y
2

y
1

Y
2

wy
1

y 2 wy 1 y
2

+ =

d

d

0

0

0

0

0

0

1

0 1

0

1

0

d

y
1

z y 1 y
2

=
0

1

y
2

Y
1

wy 1 y 2 =

Y
2

wy
1

wy
2

+ =

z y
2

=

w y
1

y
2

+ () =

Ignoring don't cares Using don't cares

22CSE370, Lecture 21 Figure 8.8. Sequential circuit derived in Figure 8.7.

D Q

Q

D Q

Q

Y 2

Y 1
w

Clock

z

y 1

y 2

Resetn

23CSE370, Lecture 21 Figure 8.29. Verilog code for the FSM in Figure 8.3.

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] y, Y;
parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10;

// Define the next state combinational circuit
always @(w or y)

case (y)
A: if (w) Y = B;

else Y = A;
B: if (w) Y = C;

else Y = A;
C: if (w) Y = C;

else Y = A;
default: Y = 2'bxx;

endcase

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0)y <= A;
elsey <= Y;

// Define output
assign z = (y == C);

endmodule

24CSE370, Lecture 21 Figure 8.29. Re-written Verilog code for the FSM in Figure 8.3.

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] state, NextState;
parameter [2:1] stateA = 2'b00, stateB = 2'b01, stateC = 2'b10;

// Define the next state combinational circuit
always @(w or state)

case (state)
stateA : if (w) NextState = stateB;

else NextState = stateA;
stateB : if (w) NextState = stateC;

else NextState = stateA;
stateC : if (w) NextState = stateC;

else NextState = stateA;
default: NextState = 2'bxx;

endcase

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0) state <= stateA;
else state <= NextState;

// Define output
assign z = (state == stateC);

endmodule

