Overview

& Last lecture
= Finished counter design
& Design example
& Self-starting counters

+ Today
= Introduction to finite-state machines
¥ Moore versus Mealy machines
& Synchronous Mealy machines
« Example: A parity checker

CSE370, Lecture 21

Finite state machines

& FSM: A system that visits a finite number of logically
distinct states

& Counters are simple FSMs
= Outputs and states are identical
= Visit states in a fixed sequence

& FSMs are more complex than counting
= Outputs can depend on current state and on inputs
= State sequencing depends on current state and on inputs

CSE370, Lecture 21 2

Generalized FSM model

& State variables (state vector) holds circuit state
= Stored in registers

& Combinational logic computes next state and outputs
= Next state is a function of current state and inputs
= Outputs are functions of
¥ Current state (Moore machine)
¥ Current state and inputs (Mealy machine)

output
logic

R Next-state Next State
logic
m

Outputs

CSE370, Lecture 21

inp

inp

Moore versus Mealy machines

— Moore machine
Ut combinational Outputs are a function
—* logic for of current state

|
next state q Ig g outputs
[5 Outputs change

synchronously with
state changes

state feedback

—> b

logic for| outputs

Mealy machine
outputs

Outputs depend on state
and on inputs

combinational |
logic for —»|
next state

Input changes can cause
immediate output changes
state feedback (asynchronous)

CSE370, Lecture 21 4

Example: Moore versus Mealy

Circuits recognize AB=10 followed by AB=01
= What kinds of machines are they?

CSE370, Lecture 21

Specifying outputs for a Moore machine

& Output is a function of state only
= Specify output in the state bubble
= Example: Detector for 01 or 10

current | next current
reset input state |state output

Oo0O0OO0OO0OO0OOOOOR
PrORrROROROROI
MmMMoOOOOW®> > |
OmOoOmMOmMO®O ®@>

o PRPRPPOOOOOOO

CSE370, Lecture 21

Specifying outputs for a Mealy machine

& Output is a function of state and inputs
= Specify outputs on transition arcs
= Example: Detector for 01 or 10

current | next current
reset input state |state output

1 - - A 0
0 [¢] A B 0
0 1 A [} 0
0 0 B B 0
0 1 B C 1
0 0 [} B 1
0 1 [} C 0
CSE370, Lecture 21 7

Comparing Moore and Mealy machines

& Moore machines
+ Safer do use because outputs change at clock edge
— May take additional logic to decode state into outputs

& Mealy machines
+ Typically have fewer states
+ React faster to inputs — don't wait for clock
— Asynchronous outputs can be dangerous

& We will often design synchronous Mealy machines
= Design a Mealy machine
= Then register the outputs

CSE370, Lecture 21 8

Synchronous (registered) Mealy machine

Registered state and registered outputs
= No glitches on outputs
= No race conditions between communicating machines

logic for|
inputs —>| oL?tputs outputs
—>|

combinational [—>|
logic for —>|
next state

state feedback

CSE370, Lecture 21 9

FSM design

¢ Generalized counter design

= Counter-design procedure
1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

= FSM-design procedure
1. State diagram and state-transition table
2. State minimization
3. State assignment (or state encoding)
4. Next-state logic minimization
5. Implement the design

CSE370, Lecture 21 10

Example: A parity checker
& Serial input string

= OUT=1 if odd # of 1s in input

= OUT=0 if even # of 1s in input

1. State diagram and state-transition table

Present Input Next Present
State State Output

s " Even 0 Even 0

Even 1 Odd 0

Odd 0 Odd 1

Odd 1 Even 1

o
| Moore-machine state diagram

CSE370, Lecture 21 11

Parity checker (con't)

2. State minimization: Already minimized
= Need both states (even and odd)
= Use one flip-flop

3. State assignment (or state encoding)

Present Input Next Present
State State Output

0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1 Assignment
Even §0
Odd §1

CSE370, Lecture 21 12

Parity checker (con't)

4. Next-state logic minimization
= Assume D flip-flops
= Next state = (present state) XOR (present input)
= Present output = present state

5. Implement the design

D
Input D Q Output

Implementation

& Can map FSMs to programmable logic devices

-

& Other options: Gate arrays, semicustom ICs, etc.

CSE370, Lecture 21 14

> QP
CLK
CSE370, Lecture 21 13
W ——= inati Combinational
Combinational i —e
Flip-fi jrcui Z
dircuit ip-flops) circuit
—

Clock —4,_>

CSE370, Lecture 21 Figure8.1. The general form of a sequential circuit.

15

Clockeycle: to t to t3 t4 t5 tg t7 tg tg tio
w 0 1 0 1 1 0 1 1 1 0 1
zz 0 0 00O 1 0 0 1 1 O
CSE370, Lecture 21 Figure 8.2. Sequences of input and output signals. 16

CSE370, Lecture 21 Figure8.3. State diagram of a simple sequential circuit.

17

Present Next state Output
state | w=0 w=1 z
A A B 0
B A C 0
C A C 1

CSE370, Lecture 21 Figure 8.4. Statetable. 18

Y1 Vi

Combinational —P
circuit

Yz Y2

Combinational | __
circuit

Clock

CSE370, Lecture 21 Figure8.5. A general sequential circuit.

Ignoring dontt cares

Y17 WY

VZ = W’/1)/2+Wy1y2

Using dont cares

= wy g twy,
=wly +y,)

¢!
Y2 0o 1
ol o] o 7
2=y, 8
1
CSE370, Lecture 21 Figure 8.7. Derivation of logic expressions. 21

Next state
Present
sqate | w=0 w= 1 |Oupdt
z
YY1 | Y21 Va1
A 00 00 01 0
B 01 00 10 0
C 10 00 10 1
11 dd dd d
CSE370, Lecture 21 Figure8.6. A state-assigned table. 20
Y Y2
D Q z
—P Q
o
Y1 v
w D Q
—p Q
_!!——‘
Clock
Resetn
CSE370, Lecture 21 Figure 8.8. Sequential circuit derivedin Figure 8.7. 2

module simple (Clock, Resetn, w, 2);
input Clock, Resetn, w;
output z;
reg[21]y, Y

parameter [21] A = 2500, B = 2b01, C = 2b10;

1/ Define the next state combinational circuit
always @w or y)

case (y)
A:if (W) Y =B;
dse Y

Biif(w) Y=C;
dse Y

C:

11 Define the sequential block

always @(negedge Resetn or posedge Clock)
i (Resetn == 0)y <= A;
esey <=

11 Define output
assignz=(y==C);

endmodule

CSE370, Lecture 21 Figure 8.29. Verilog code for the FSM in Figure 8.3. 23

module smple (Clock, Resetn, w, 2);
input Clock, Resetn, w;
output z;
reg [2:1] State, NextState;
parameter [2:1] stateA = 2100, StateB = 2b0L, StateC = 2b10;

/I Define the next state combinational circuit
always @(w or state)
case (state)
stateA : if (w) NextState = stateB;
else NextState = stateA;
stateB : if (w) NextState = stateC;
else NextState = stateA;
stateC : if (w) NextState = stateC;
else NextState = stateA;
default: NextState = 2bxx;
endcase

11 Define the sequential block

always @(negedge Resetn or posedge Clock)
if (Resetn == 0) State <= StateA;
dlse state <= NextState;

11 Define output
assign z = (tate == stateC);

endmodule

CSE370, Lecture 21 Figure 8.29. Re-written Verilog code for the FSM in Figure 8.3.24

