Finite State Machines

3 Sequential circuits
primitive sequential elements
combinational logic

3 Models for representing sequential circuits
finite-state machines (Moore and Mealy)

3 Basic sequential circuits revisited
shift registers
counters

38 Design procedure
state diagrams
state transition table
next state functions

3 Hardware description languages
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Abstraction of state elements

¥ Divide circuit into combinational logic and state

¥ Localize the feedback loops and make it easy to break cycles

¥ Implementation of storage elements leads to various forms of sequential logic

Y
Inputs ™" Combinational
> Logic
<
State Inputs e
I
Storage Elements
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Forms of sequential logic

¥ Asynchronous sequential logic — state changes occur whenever state inputs
change (elements may be simple wires or delay elements)

¥ Synchronous sequential logic — state changes occur in lock step across all
storage elements (using a periodic waveform - the clock)

— < < ———3%
< > 14
—> > »> >
Clock
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Finite state machine representations

3 States: determined by possible values in sequential storage elements

38 Transitions: change of state
38 Clock: controls when state can change by controlling storage elements

¥ Sequential logic
sequences through a series of states

based on sequence of values on input signals
clock period defines elements of sequence
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Example finite state machine diagram

3 Combination lock from introduction to course
5 states
5 self-transitions + 1 reset to state S1
6 transitions + 4 resets

not new not new not new

Winter 2001 CSE370 - VII - Finite State Machines

Can any sequential system be represented
with a state diagram?

38 Shift register

input value shown ouT out2
on transition arcs ‘

output values shown  IN D Q DQ———D Qr
within state node CLK /1\ /1\ /.\
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Counters are simple finite state machines

3 Counters
proceed through well-defined sequence of states in response to enable

3 Man es of counters: binary, BCD, Gray-code
3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

001 =@ >011

@ 3-bit up-counter @

111)< @< 101
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How do we turn a state diagram into logic?

3 Counter
3 flip-flops to hold state
logic to compute next state
clock signal controls when flip-flop memory can change
Xwait long enough for combinational logic to compute new value
Xldon't wait too long as that is low performance

OouT1 ouT2 OouT3

[CAT B3 [

AlA A

o

uqn
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FSM design procedure

38 Start with counters
simple because output is just state
simple because no choice of next state based on input

3 State diagram to state transition table
tabular form of state diagram
like a truth-table

38 State encoding
decide on representation of states

for counters it is simple: just its value

3 Implementation
flip-flop for each state bit
combinational logic based on encoding
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FSM design procedure: state diagram to
encoded state transition table

38 Tabular form of state diagram
38 Like a truth-table (specify output for all input combinations

3 Encoding of states: easy for counters — just use value

current state next state

@ @ @ 0 | 000 001 1
1| 001 010 | 2

2 | 010 011 | 3

3-bit up-counter @ 3 | 011 100 | 4

4 | 100 101 5

4_‘4_‘ 5] 101 110 | 6
@ @ @ 6 | 110 111 | 7
7 | 111 000 | O
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Implementation

3 D flip-flop for each state bit

Verilog notation to show

¥ Combinational logic based on encoding function represents an
input to D-FF
C3 C2 C1|N3 N2 N1
0 0 0 (0 O 1
0 0 1 |0 1 0 N1 <=C1’
0o 1 0 lo 1 1 N2 <= C1C2' + C1'C2
<= C1 xor C2
0 1 141 00 N3 <= C1C2C3’ + C1'C3 + C2'C3
1 0 0|1 0 1 <= (C1C2)C3’ + (C1’ + C27)C3
1 0 1 1 1 0 <= (C1C2)C3’ + (C1C2)'C3
1 1 0 |1 1 1 <= (C1C2) xor C3
1 1 1 |10 0 O
N3 C3 N2 C3 N1 C3
00[17 ol[1]1] o0 (1]1]1] 1]
cf o |(1]| o 1 caf 1] o |ofx] cjofo]o]o
(o Cc2 Cc2
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Back to the shift register

3 Input determines next state

In C1 C2 C3|Ni N2 N3
00 0 010 0 0
0lo o 1]0 o o
0lo 1 0o o 1
0lo 1 1o o 1
0l1 0o olfo 1 o
0l1 0o 1lo 1 o
0l1 1 olo 1 1
01 1 1o 1 1
10 0o o1 0 o
110 0 1|1 0 o
110 1 01 0 1
1A Yl mec ouT ouT2 ouT3
111 0 1|1 1 o0 J
1011 0|1 11
111 01 111 1 1 IN DQ DQ DQ
i |

CLK 1
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More complex counter example

¥ Complex counter
repeats 5 states in sequence

not a binary number representation

3 Step 1: derive the state transition diagram
count sequence: 000, 010, 011, 101, 110

38 Step 2: derive the state transition table from the state transition diagram

Present State| Next State
A | C+ B+

C B A+
0 0 0|0 1 O
o o 1|- - -
0 1 0|0 1 1
0 1 11 0 1
1 0 0]|- - -
1 0 1)1 1 0
1 i 0|0 0 O
1 1 1/1- - -
note the don't care conditions that arise from the unused state codes
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More complex counter example (cont’d)
38 Step 3: K-maps for next state functions
C+ C B+ C A+ C
oo ol x (1] 1]| o |x/ 0 m 0| x
Allx ] 1] x] 1] A/xox|1\_ al x |1 x| o
B B B
C+<=A
B+ <= B+ AC’
A+ <= BC
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Self-starting counters (cont’d)

¥ Re-deriving state transition table from don't care assignment

C+ C B+ Cc A+ Cc
0 0 0 0 1 1 0 1 0 1 0 0
All 1 1 1 All 0 0 1 Al O 1 0 0
B B B
Present State| Next State
C B A |C+ B+ A+
0 0 O
0 0 1
0o 1 o0 1 1
o 1 1 (1 0 1
1 0 0
i 0 111 1 0
1 1 0
T O 5
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Self-starting counters

¥ Start-up states
at power-up, counter may be in an unused or invalid state
designer must guarantee that it (eventually) enters a valid state

38 Self-starting solution
design counter so that invalid states eventually transition to a valid state

may limit exploitation of don't cares
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implementation
on previous slide




Activity

38 2-bit up-down counter (2 inputs)
direction: D = 0 for up, D = 1 for down
count: C =0 for hold, C = 1 for count
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Activity (cont’d)
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Counter/shift-register model

3 Values stored in registers represent the state of the circuit
3 Combinational logic computes:
next state

XIfunction of current state and inputs
outputs
Xlvalues of flip-flops

Inputs —— "e’l‘;gsitcate Next State

A 4

Current State

> Outputs
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General state machine model

38 Values stored in registers represent the state of the circuit

3 Combinational logic computes:
next state
XIfunction of current state and inputs
outputs
XIfunction of current state and inputs (Mealy machine)
XIfunction of current state only (Moore machine)

Outputs

Current State
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State machine model (cont’d)

¥ States: S1, S2, ..., Sk

¥ Inputs: I1,12,...,Im

3 Outputs: 01, 02, ..., On

38 Transition function: Fs(Si, Ij)

3 Output function: Fo(Si) or Fo(Si, Ij)

Outputs
Inputs

Current State
Next State
State X X X X X
Cock 0 %+ 1 t 2 % 3 ¢+ 4 % 5
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Example: ant brain (Ward, MIT)

¥ Sensors: L and R antennae, 1 if in touching wall

3 Actuators: F - forward step, TL/TR - turn left/right slightly é/
¥ Goal: find way out of maze

3 Strategy: keep the wall on the right
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Ant behavior

P ——
A: Following wall, touching B: Following wall, not touching
Go forward, turning Go forward, turning right
left slightly slightly
«-—
— oo

. D: Hit wall again
C: Break in wall Back to state A
Go forward, turning_

right slightly

E: Wall in front
Turn left until...

F: ...we are here, same as
state B

. G: Turn left until...

LOST: Forward until we
touch something
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Designing an ant brain

3 State diagram
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Synthesizing the ant brain circuit

3 Encode states using a set of state variables
arbitrary choice - may affect cost, speed

3 Use transition truth table
define next state function for each state variable
define output function for each output
38 Implement next state and output functions using combinational logic
2-level logic (ROM/PLA/PAL)
multi-level logic
next state and output functions can be optimized together
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Transition truth table

¥ Using symbolic states
and outputs

L'R’

state L R | nextstate outputs )
LOSTO 0 | LOST F R
LOST- 1 | E/G F

LOST1 - | E/G F

A 00| B TL F

A 01| A TLF

A 1 -| E6G TLF

B -0/ C TR, F

B -1 A TR, F
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Synthesis

8 5 states : at least 3 state variables required (X, Y, Z) LOST - 000
state assignment (in this case, arbitrarily chosen) E/G -001
A - 010
B - 011
C - 100
state L R | nextstate outputs it now remains
X.Y.Z (X, Y+,Z* F TRTL «—to synthesize
000 00 000 10 0 these 6 functions
000 01 001 10 0
010 00 011 10 1
01001 010 10 1
01010 001 10 1
010 11 001 10 1
011 00 100 11 0
01101 | 010 11 0
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Synthesis of next state and output functions

state inputs| next state outputs

XYZ LR | XtY*Z+ FTRTL

00000 000 10 0

000 -1 001 10 0

000 1 - 001 10 0

00100 011 00 1

001 -1 010 00 1 e.qg.

001 1 - 010 00 1

01000 [011 10 1 TR=X+Y2Z
010 01 010 10 1 X*=XR'+YZR' =R'TR
010 1 - 001 10 1

011 -0 100 11 0

011 -1 010 11 0

100 -0 100 11 0

100 -1 010 11 0
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Circuit implementation

3 Outputs are a function of the current state only - Moore machine

Current State
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Don’t cares in FSM synthesis

38 What happens to the "unused" states (101, 110, 111)?
3 They were exploited as don't cares to minimize the logic

if the states can't happen, then we don't care what the functions do
if states do happen, we may be in trouble

Ant is in deep trouble @

if it gets in this state ol
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State minimization

¥ Fewer states may mean fewer state variables
3 High-level synthesis may generate many redundant states

3 Two state are equivalent if they are impossible to distinguish from the
outputs of the FSM, i. e., for any input sequence the outputs are the same

¥ Two conditions for two states to be equivalent:
1) output must be the same in both states
2) must transition to equivalent states for all input combinations
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Ant brain revisited

¥ Any equivalent states?
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New improved brain

¥ Merge equivalent B and C states
3 Behavior is exactly the same as the 5-state brain
¥ We now need only 2 state variables rather than 3

L'R
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New brain implementation
state inputs| next state outputs
XY LR | XY+ FTRTL xt Xy X
00 00 |00 100 UEEE UEEIE
00 - 1 01 100 0011‘R 1000‘R
00 1- 01 100 I_‘0010 I_‘1001
o[o[1]0 1[0 1] 1
01 00 11 001 ~ ~
01 -1 01 001
01 1- 01 001
10 00 |11 101 F _X_ TR X X
10 01 10 101 1[0 1] 1 ol of 1f 0 ol 1f{of 1
10 1- 01 10 1 1011‘R 0010‘R o[ 1[0/ 1
N S R e e A e e
11 -1 10 110 p— p— p—
Y Y Y
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Mealy vs. Moore machines

3 Moore: outputs depend on current state only
38 Mealy: outputs may depend on current state and current inputs
38 Our ant brain is a Moore machine

output does not react immediately to input change

¥ We could have specified a Mealy FSM
outputs have immediate reaction to inputs
as inputs change, so does next state, doesn’t commit until clocking event

L'R/TLF
L/TL
react right away to leaving the wall
L'R'/TR, F
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Specifying outputs for a Moore machine

3 Output is only function of state
specify in state bubble in state diagram
example: sequence detector for 01 or 10

current | next
reset input state state output

[l eNeNeNeNeNelNelNelNem
H OFROFROKORO
mMmMmMOoOOOOT®>> |
owOMmMOMOUmO m® >
HHHRHROOOOOO
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Specifying outputs for a Mealy machine

38 Output is function of state and inputs
specify output on transition arc between states
example: sequence detector for 01 or 10

current | next

reset input state state output

1 - - A 0

0 0 A B 0

0 1 A Cc 0

0 0 B B 0

0 1 B C 1

0 0 C B 1

0 1 C C 0
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Comparison of Mealy and Moore machines

3 Mealy machines tend to have less states
different outputs on arcs (n2) rather than states (n)
¥ Moore machines are safer to use
outputs change at clock edge (always one cycle later)
in Mealy machines, input change can cause output change as soon as
logic is done — a big problem when two machines are interconnected —
asynchronous feedback

3 Mealy machines react faster to inputs
react in same cycle — don't need to wait for clock
in Moore machines, more logic may be necessary to decode state into
outputs — more gate delays after

logic for
i —p P —Pp| ———>
inputs > combinational inputs > outputs outputs

> logic for

> — . —> »| combinational

next state logic for
> > Ogtputs — outputs » logic for
,—> — —> ,—> next state

state feedback state feedback
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Mealy and Moore examples

¥ Recognize AB = 0,1
Mealy or Moore?

A
D
B d

—dock ~, Qo—

clock | -
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Mealy and Moore examples (cont’d)

3 Recognize A,B = 1,0 then 0,1
Mealy or Moore?

out

A D Q
—> Qo—
B b Q
—> Qo—
clock
>° } out
= D Q . D Q
> Qo— > Qo—
B D Q D Q
—> Qo— —> Qo—
dogk
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Registered Mealy machine (really Moore)

3 Synchronous (or registered) Mealy machine
registered state AND outputs
avoids ‘glitchy’ outputs
easy to implement in PLDs

3 Moore machine with no output decodin
outputs computed on transition to next state rather than after entering

view outputs as expanded state vector
'—» Outputs

Current State
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Hardware Description Languages and
Sequential Logic

38 Flip-flops
representation of clocks - timing of state changes
asynchronous vs. synchronous

38 FSMs
structural view (FFs separate from combinational logic)
behavioral view (synthesis of sequencers — not in this course)

38 Data-paths = data computation (e.g., ALUs, comparators) + registers
use of arithmetic/logical operators
control of storage elements
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Example: reduce-1-string-by-1

3 Remove one 1 from every string of 1s on the input

Moore Mealy
G
L &)

1/0

® "ot
0 1 @b 11
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Verilog FSM - Reduce 1s example

3 Moore machine
“define zero O
‘define onel 1 <— state assignment

“define twols 2

module reduce (clk, reset, in, out);

input clk, reset, in;
output out;
reg out;

reg [2:1] state; // state variables
reg [2:1] next_state; 1 0
always @ (posedge clk)

if (reset) state = "zero;

else state = next_state;
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Moore Verilog FSM (cont’d)

always Q@ (in or state)
\ crucial to include

Ca?‘;er(zFate) all signals that are
// last input was a zero input to state determination
begi n
if (in) next_state = ‘onel;
else next_state = ‘zero;
end
“onel: note that output
// we've seen one 1 depends only on state
begi n
if (in) next_state = ‘twols;
else next_state = ‘zero;
end
twols: always @ (state)
// we've seen at least 2 ones case (state)
begi n ‘zero: out = 0;
if (in) next_state = ‘twols; ‘onel: out = 0;
else next_state = ‘zero; “twols: out = 1;
end endcase
endcase
endnodul e
Winter 2001
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Mealy Verilog FSM

module reduce (clk, reset,
input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next_state;

in, out);

always @ (posedge clk)
if (reset) state
else state

‘zero;
next_state;

always @ (in or state)

case (state)
“zero: // last input was a zero
begi n
out = 0;
if (in) next_state = ‘one;
else next_state = ‘zero;
end
“one: // we've seen one 1
if (in) begin
next_state = ‘one; out = 1;
end else begin
next_state = “zero; out = 0;
end
endcase
endnodul e
Winter 2001
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Synchronous Mealy Machine

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always Q@ (posedge clk)

if (reset) state = "zero;
else
case (state)
“zero: // last input was a zero
begi n
out = 0;
if (in) state = ‘one;
else state = " zero;
end
“one: // we've seen one 1
if (in) begin
state = ‘one; out = 1;
end else begin
state = “zero; out = 0;
end
endcase
endnodul e
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Sequential logic implementation summary

3 Models for representing sequential circuits
abstraction of sequential elements
finite state machines and their state diagrams
inputs/outputs
Mealy, Moore, and synchronous Mealy machines

3 Finite state machine design procedure
deriving state diagram
deriving state transition table
determining next state and output functions
implementing combinational logic

3 Hardware description languages
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