Computer organization

Computer design — an application of digital logic design procedures
Computer = processing unit + memory system
Processing unit = control + datapath
Control = finite state machine
1 inputs = machine instruction, datapath conditions
1 outputs = register transfer control signals, ALU operation codes
1 instruction interpretation = instruction fetch, decode, execute
1 Datapath = functional units + registers
1 functional units = ALU, multipliers, dividers, etc.
1 registers = program counter, shifters, storage registers

CSE 370 - Winter 2000 - Computer Organization - 1

Structure of a computer

1 Block diagram view

Registers

1 Selectively loaded — EN or LD input
1 Output enable — OF input
1 Multiple registers — group 4 or 8 in parallel

OE asserted causes FF state to be
connected to output pins; otherwise they
are left unconnected (high impedance)

LD asserted during a lo-to-hi clock
transition loads new data into FFs

CSE 370 - Winter 2000 - Computer Organization - 3

address
Processor rea}fwrite Memory
. System
central processing data
unit (CPU)
control signals
Control Data'Rath
data conditions,
instruction unit execution unit
— instruction fetch and — functional units
interpretation FSM and registers
CSE 370 - Winter 2000 - Computer Organization - 2
Register transfer
. . . = = =
1 Point-to-point connection i¢¢ FERR FERR Y vy
1 dedicated wires [mux | [mox] [mux] [Mux]
1 muxes on inputs of i
each register ‘ "5 | [] [rd] [ra]
1 Common input from multiplexer v I I I
1 load enables [s] [][] [Ra]
for each register 3 1 1 1
1 control signals [MUX |
for multiplexer i

1 Common bus with output enables v I I
1 output enables and load [s] [t] [d] [rRa]
enables for each register 7 1 1

Register files

1 Collections of registers in one package
1 two-dimensional array of FFs
1 address used as index to a particular word
1 can have separate read and write addresses so can do both at same

time
1 4 by 4 register file
1 16 D-FFs

1 organized as four words of four bits each —RE

I write-enable (load) —Re
1 read-enable (output enable) — wg 33—
WB §2—
WA 1—
o—

— o3

—1p2

—_ bt

—|D0

CSE 370 - Winter 2000 - Computer Organization - 5

CSE 370 - Winter 2000 - Computer Organization - 4

Memories

1 Larger collections of storage elements

1 implemented not as FFs but as much more efficient latches

1 high-density memories use 1 to 5 switches (transitors) per memory bit
1 Static RAM — 1024 words each 4 bits wide

1 once written, memory holds forever (not true for denser dynamic RAM)

1 address lines to select word (10 lines for 1024 words)
1 read enable _ "
| same as output enable S
| often called chip select
| permits connection of many 1 :g 03—
chips into larger array — ﬁg %8%—
1 write enable (same as load enable) — Q‘S‘ 00—
1 bi-directional data lines —|A3
| output when reading, input when writing] 3%
— A0

CSE 370 - Winter 2000 - Computer Organization - 6

Instruction sequencing

1 Example — an instruction to add the contents of two registers (Rx and Ry)
and place result in a third register (Rz)
1 Step 1: get the ADD instruction from memory into an instruction register
1 Step 2: decode instruction
1 instruction in IR has the code of an ADD instruction
1 register indices used to generate output enables for registers Rx and Ry
1 register index used to generate load signal for register Rz
1 Step 3: execute instruction
1 enable Rx and Ry output and direct to ALU
1 setup ALU to perform ADD operation
1 direct result to Rz so that it can be loaded into register

CSE 370 - Winter 2000 - Computer Organization - 7

Elements of the control unit (aka instruction unit)

1 Standard FSM elements

state register

next-state logic

output logic (datapath/control signalling)

Moore or synchronous Mealy machine to avoid loops unbroken by FF

1 Plus additional "control" registers
1 instruction register (IR)
1 program counter (PC)
1 Inputs/outputs
1 outputs control elements of data path
1 inputs from data path used to alter flow of program (test if zero)

CSE 370 - Winter 2000 - Computer Organization - 9

Instruction types

1 Data manipulation

add, subtract
increment, decrement
multiply

shift, rotate
immediate operands

1 Data staging
1 load/store data to/from memory
1 register-to-register move
1 Control
1 conditional/unconditional branches in program flow
1 subroutine call and return

CSE 370 - Winter 2000 - Computer Organization - 8

Instruction execution

1 Control state diagram (for each diagram)
1 reset

1 fetch instruction
1 decode

1 execute

Reset

Initialize
Machine
1 Instructions partitioned into three classes
1 branch
1 load/store
1 register-to-register
1 Different sequence through
diagram for each

instruction type to-Register

Branch Branch
Taken Not Take

CSE 370 - Winter 2000 - Computer Organization - 10

Data path (heirarchy)

1 Arithmetic circuits constructed in hierarchical and iterative fashion
1 each bit in datapath is functionally identical Cin
I 4-bit, 8-bit, 16-bit, 32-bit datapaths
Ain

Bin FA Sum

Cout

1
B?n@\“‘ll?:D Cout
Lo

c

CSE 370 - Winter 2000 - Computer Organization - 11

Data path (ALU)

1 ALU block diagram
1 input: data and operation to perform
1 output: result of operation and status information

Operation ——»\

CSE 370 - Winter 2000 - Computer Organization - 12

Data path (ALU + registers)

1 Accumulator
1 special register
1 one of the inputs to ALU
1 output of ALU stored back in accumulator
1 One-address instructions
1 operation and address of one operand
1 other operand and destination
is accumulator register
1 AC <— AC op Mem[addr]
1 "single address instructions”
(AC implicit operand)
1 Multiple registers
1 part of instruction used
to choose register operands

CSE 370 - Winter 2000 - Computer Organization - 13

Data path (bit-slice)

1 Bit-slice concept — iterate to build n-bit wide datapaths

co ALU ALU — ClI

AR
Rl P e
N e
Rl P e P
N MNP EN
from from from

[*—memory [*—memory [*—memory

1 bit wide 2 bits wide

Instruction path

1 Program counter
1 keeps track of program execution
1 address of next instruction to read from memory
1 may have auto-increment feature or use ALU
1 Instruction register
current instruction
includes ALU operation and address of operand
also holds target of jump instruction
immediate operands
1 Relationship to data path
1 PC may be incremented through ALU
1 contents of IR may also be required as input to ALU

CSE 370 - Winter 2000 - Computer Organization - 15

CSE 370 - Winter 2000 - Computer Organization - 14

Data path (memory interface)

1 Memory
1 separate data and instruction memory (Harvard architecture)
| two address busses, two data busses
1 single combined memory (Princeton architecture)
| single address bus, single data bus
1 Separate memory
ALU output goes to data memory input
register input from data memory output
data memory address from instruction register
instruction register from instruction memory output
instruction memory address from program counter
1 Single memory
1 address from PC or IR
1 memory output to instruction and data registers
1 memory input from ALU output

Block diagram of processor

1 Register transfer view of Princeton architecture

CSE 370 - Winter 2000 - Computer Organization - 16

1 which register outputs are connected to which register inputs
1 arrows represent data-flow, other are control signals from control FSM
1 MAR may be a simple multiplexer rather than separaltoeagegister
1 MBRs split in two (REG and IR) 16 pai
1 load control for each register n}i
|stor d: w
it ot Memoy
(16-bit word:
addr
Control [AR]

16 e

16

CSE 370 - Winter 2000 - Computer Organization - 17

Block diagram of processor

1 Register transfer view of Harvard architecture

1 which register outputs are connected to which register inputs
1 arrows represent data-flow, other are control signals from control FSM
1 two MARs (PC and IR) \poaatd
I two MBRs (REG and IR) 1 il
1 load control for each register d wr
stor$> d:
pal ata Memor
(16-bit word:
addr
Control
FSM
:!:tuMEmOI"
8-bit words]
addr
16

CSE 370 - Winter 2000 - Computer Organization - 18

CSE370 processor data-path and memory

Princeton architecture memory has only 255 words __y, [[F].]
. . with a display on the last one
Register file

Instruction register

PC incremented

through ALU

1 Modeled after
MIPS rt000
(used in 378
textbook by
Patterson &
Hennessy)

really a 32 bit

machine

we'll do a 16 bit

version

CSE 370 - Winter 2000 - Computer Organization - 19

CSE370 processor control

1 Synchronous Mealy machine
1 Multiple cycles per instruction

Controller Eix gEndEH |— Bre gBendEH
ALUnaEH |— ALUnaEn
FmaEH — FImaER
1 resen
s [ETTTY wes f— e
"= mT [—i mI
Pr1d |— Frid
Prsel [— Flszl
wrReglel |— wiBegicl
zere — zero wrDatafel [— wrlatalel
Tegirite [Tedirite
1E1d — IELd
MEELd — MERLS
15t ot Tnst Op

neg —|mneg

°op
sreBL [sTeEL
STCED — FTEED
sTCA — rrch

1k
-—‘ ’

CSE370 processor instructions

1 Three principal types (16 bits in each instruction)
type op s rt rd funct

Rlegiste) [3 [3 [3 [3 [4 |
I(mmediate)| 3 | 3 | 3 | 7 |
Jump) [3 [13 J

1 Instructions we’ll implement

CSE 370 - Winter 2000 - Computer Organization - 20

add 0 rs rt rd 0
sub 0 s it rd 1
R | and 0 rs rt rd 2
or 0 rs rt rd 3
skt 0 s rt rd 4 rd=(rs <rt)
w 1 s rt offset rt = mem([rs + offset]
sw 2 s rt offset mem[rs + offset] = rt
I beq 3 s rt offset pc = pc + offset, if (rs == rt)
addi 4 s t offset rt = rs + offset
J j 5 target address pc = target address
halt 7 - stop execution until reset

CSE 370 - Winter 2000 - Computer Organization - 21

Tracing an instruction's execution

1 Instruction: r3=rl+r2
R [0 [rs=r1 | rt=r2 | rd=r3 |funct=0 |
1 1. instruction fetch
move instruction address from PC to memory address bus
assert memory read
move data from memory data bus into IR
configure ALU to add 1 to PC
configure PC to store new value from ALUout

1 2. instruction decode

op-code bits of IR are input to control FSM

1 rest of IR bits encode the operand addresses (rs and rt)
| these go to register file

Tracing an instruction’'s execution (cont’d)

B Instruction: r3=rl+1r2
R [0 [rs=r1 [rt=r2 | rd=r3 [funct=0
1 3. instruction execute
1 setup ALU inputs
1 configure ALU to perform ADD operation
1 configure register file to store ALU result (rd)

CSE 370 - Winter 2000 - Computer Organization - 23

CSE 370 - Winter 2000 - Computer Organization - 22

Tracing an instruction’'s execution (cont’d)

1 Step1l

meDagainl
regiziee wzBegiel

TegirTte [REEGIE
Dt adel

Inst,

Lo Reg

-
wR File
|_ Tene
| —
i

Fegh
Begh

CSE 370 - Winter 2000 - Computer Organization - 24

Tracing an instruction’'s execution (cont’d)

BLiel reser PULS

1 Step2

Tracing an instruction’'s execution (cont’d)

BLiel reser PULS

1 Step3

CSE 370 - Winter 2000 - Computer Organization - 25 v to controller

Register-transfer-level description

1 Control
1 transfer data between registers by asserting appropriate control signals

1 Register transfer notation - work from register to register
1 instruction fetch:
mabus «— PC; - move PC to memory address bus (PCmaEN, ALUmaEN)
memory read; - assert memory read signal (mr, RegBmdEN)
IR < memory; - load IR from memory data bus (IRId)
op « add —send PC into A input, 1 into B input, add
(srcA, srcBO, scrB1, op)
PC « ALUout - load result of incrementing in ALU into PC (PCld, PCsel)
1 instruction decode:
IR to controller
values of A and B read from register file (rs, rt)
1 instruction execution:
op « add - send regA into A input, regB into B input, add
(srcA, srcBO, scrB1, op)
rd « ALUout - store result of add into destination register
(regWrite, wrDataSel, wrRegSel)

CSE 370 - Winter 2000 - Computer Organization - 27

CSE 370 - Winter 2000 - Computer Organization - 26

Register-transfer-level description (cont’d)

1 How many states are needed to accomplish these transfers?
1 data dependencies (where do values that are needed come from?)
1 resource conflicts (ALU, busses, etc.)
1 Inour case, it takes three cycles
1 one for each step
1 all operation within a cycle occur between rising edges of the clock
1 How do we set all of the control signals to be output by the state machine?
1 depends on the type of machine (Mealy, Moore, synchronous Mealy)

Review of FSM timing

here if its a Moore machine or asynchronous Mealy machine,
e.g., the value of IRId is derived

from the value of state bits,

in this case, “fetch”

\ fetch decode execute

CSE 370 - Winter 2000 - Computer Organization - 28

|I step 1 I step 2 I step 3

TlR«—mem[PC], Acrs Trd(—A—vB T T
PCePC+1; | Bert

to configure the data-path to do this here,
when do we set the control signals?

here if its a synchronous Mealy machine,
e.g., IRId = 1 in this state will not change
the value of IRId until the next clock edge

CSE 370 - Winter 2000 - Computer Organization - 29

FSM controller for CPU (skeletal Moore FSM)

1 First pass at deriving the state diagram (Moore or Mealy machine)
1 these will be further refined into sub-states

reset

instruction
fetch

instruction
decode

instruction
execution

CSE 370 - Winter 2000 - Computer Organization - 30

FSM controller for CPU (skeletal sync. Mealy FSM)

1 First pass at deriving the state diagram (synchronous Mealy machine)
1 these will be further refined into sub-states

reset

set up for
instruction fetch
instruction
fetch
instruction
decode

instruction
execution

CSE 370 - Winter 2000 - Computer Organization - 31

FSM controller for CPU (reset and inst. fetch)

1 Assume Moore machine
1 outputs associated with states rather than arcs
1 Reset state and instruction fetch sequence
1 On reset (go to Fetch state)
1 start fetching instructions
1 PC will set itself to zero
reset

mabus « PC; \

memory read; instruction
IR « memory data bus; fetch
PC«PC+1;

FSM controller for CPU (decode)

1 Operation decode state
1 next state branch based on operation code in instruction
1 read two operands out of register file
I what if the instruction doesn’t have two operands?

e instruction
branch based on value of decod
Inst[15:13] and Inst[3:0]

OO

CSE 370 - Winter 2000 - Computer Organization - 33

CSE 370 - Winter 2000 - Computer Organization - 32

FSM controller for CPU (instruction execution)

1 For add instruction
1 configure ALU and store result in register

rde—A+B

1 other instructions may require multiple cycles

instruction
execution

CSE 370 - Winter 2000 - Computer Organization - 34

FSM controller for CPU (add instruction)

1 Putting it all together
and closing the loop
1 the famous

instruction reset

fetch \ nstruct
instruction

decode fetch

execute

cycle

g instruction
decode

instruction
execution

CSE 370 - Winter 2000 - Computer Organization - 35

FSM controller for CPU

1 Now we need to repeat this for all the instructions of our processor
1 fetch and decode states stay the same
1 different execution states for each instruction
| some may require multiple states

CSE 370 - Winter 2000 - Computer Organization - 36

