Carry-lookahead logic

- ☐ Carry generate: Gi = Ai Bi
 - \triangleright must generate carry when A = B = 1
- ☐ Carry propagate: Pi = Ai xor Bi
 - > carry-in will equal carry-out here
- ☐ Sum and Cout can be re-expressed in terms of generate/propagate:
 - ➤ Si = Ai xor Bi xor Ci
 - = Pi xor Ci
 - > Ci+1 = Gi + Ci Pi

Carry-lookahead logic (cont'd)

- ☐ Re-express the carry logic as follows:
 - > C1 = G0 + P0 C0
 - > C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
 - > C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
 - > C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0
 - + P3 P2 P1 P0 C0

Carry-lookahead adder with cascaded carry-lookahead logic

- ☐ Carry-lookahead adder
 - > 4 four-bit adders with internal carry lookahead
 - > second level carry lookahead unit extends lookahead to 16 bits

Carry-select adder

- ☐ Redundant hardware to make carry calculation go faster
 - > compute two high-order sums in parallel while waiting for carry-in
 - > one assuming carry-in is 0 and another assuming carry-in is 1
 - > select correct result once carry-in is finally computed

