Practice problems

CSE 370 Quiz section
04/25/2000

Warm up

Fast K-Maps. Emphasis on FAST!

AB				
CD	00	01	11	10
00	0	0	1	1
01	0	1	1	X
11	X	0	0	0
10	X	0	1	1

AB

CD	00	01	11	10
00	1	X	1	X
01	0	X	0	X
11	1	1	1	0
10	0	1	0	1

AB

CD	00	01	11	10
00	1	0	1	0
01	0	1	0	1
11	1	0	1	0
10	0	1	0	1

AB

CD	00	01	11	10
00	1	0	0	0
01	1	0	X	1
11	X	1	1	0
10	0	0	0	0

Problem 1

The very well known Snorkel function is defined as follows:
$\operatorname{Snorkel}(A, B, C, D)=A^{\prime} B C D+A B C ' D+A C$
a) Implement the Snorkel function using a 16:1 mux. Also implement your 16:1 mux using $2: 1$ muxes.
b) Implement the Snorkel function using one $8: 1$ mux and gates, with A, B and C as inputs to the mux
c) Implement the Snorkel function using one $4: 1$ mux and gates, with A and B as inputs to the mux
d) Implement the Snorkel function using a 3:8 demux and an OR gate.
e) Design a circuit for the Snorkel function using just gates and a K-map.
f) Which of the above do you think has the least number of gates? The most? Which do you think has the least propagation delay? The most?

Problem 2

You have to design the graphical display for an elevator. The elevator control system, already designed by Microsoft (which has now gone into the hardware market) will give you a 4-bit number which will represent the state that the elevator is in. You have to use a 7 -segment display, as shown below, to display information about the elevator. The sevensegment display has 7 inputs, one for each segment. When a given input is 1 , the associated segment is turned on, when it's 0 , the associated segment is turned off.

The states that the elevator can be in are sequentially numbered from 0 up to 10 , and are: Up, Down, Burning (in case the users haven't noticed that the elevator is burning...), 0 (floor $0 . .$.), 1 ($1^{\text {st }}$ floor), 2, 3, 4, 5, 6, 7 .

Design a block that will use the 4 bit state given by the elevator controller to generate the inputs to the seven segment display (Represent Up as 'U', Down as ' d ', Burning as ' b ', and the floor numbers as a digit).

