Hardware description languages

1 Describe hardware at varying levels of abstraction
1 Structural description
1 textual replacement for schematic
1 hierarchical composition of modules from primitives

1 Behavioral/functional description
1 describe what module does, not how
1 synthesis generates circuit for module
1 Simulation semantics

CSE 370 - Spring 2000 - Hardware Description Languages - 1

HDLs

1 Abel (circa 1983) - developed by Data-I/O

1 targeted to programmable logic devices

1 not good for much more than state machines
1 ISP (circa 1977) - research project at CMU

1 simulation, but no synthesis

1 Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
similar to Pascal and C
delays is only interaction with simulator
fairly efficient and easy to write
IEEE standard
1 VHDL (circa 1987) - DoD sponsored standard
1 similar to Ada (emphasis on re-use and maintainability)
1 simulation semantics visible
1 very general but verbose
I IEEE standard

CSE 370 - Spring 2000 - Hardware Description Languages - 2

Verilog

1 Supports structural and behavioral descriptions

1 Structural

1 explicit structure of the circuit
1 e.g., each logic gate instantiated and connected to others

1 Behavioral

1 program describes input/output behavior of circuit
1 many structural implementations could have same behavior
1 e.g., different implementation of one Boolean function

1 We'll only be using behavioral Verilog in DesignWorks
1 rely on schematic when we want structural descriptions

CSE 370 - Spring 2000 - Hardware Description Languages - 3

Structural model

module xor

input
output
wire

inverter
inverter
and gate
and gate
or gate

endmodule

gate (out, a, b);

a, b;

out;

abar, bbar, tl1l, t2;

invA (abar, a);
invB (bbar, b);
andl (tl, a, bbar);
and2 (t2, b, abar);
orl (out, tl, t2);

CSE 370 - Spring 2000 - Hardware Description Languages - 4

Simple behavioral model
1 Continuous assignment

module xor gate (out, a, b);

input a, b;

output out; / simulation register -

reg out; keeps track of
value of signal

A

assign #6 out = a b;

endmodule
delay from input change

to output change

CSE 370 - Spring 2000 - Hardware Description Languages - 5

Simple behavioral model

1 always block

module xor gate (out, a, b);

input a, b;
output out;
reg out;

always @(a or b) begin

#6 out = a :
end

endmodule specifies when block is executed
ie. triggered by which signals

CSE 370 - Spring 2000 - Hardware Description Languages - 6

Driving a simulation

module stimulus (x, y);

output X, ¥: 2-bit vector

reg [1:0] cnt;

_—— | initial block executed
only once at start
of simulation

initial begin
cnt = 0;

repeat (4) begin
#10 cnt = cnt + 1;
$display ("@ time=%d, x=%b, y=%b, cnt=%b",
$time, x, y, cnt); end

#10 $finish; |pﬂmtoacmmde

end

assign x = cnt[1]; directive to stop

assign y = cnt[0]; simulation
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 7

Complete Simulation

1 Instantiate stimulus component and device to test in a schematic

X [] z
stimulus E%D—

CSE 370 - Spring 2000 - Hardware Description Languages - 8

Comparator Example

module Comparel (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;
assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 9

More Complex Behavioral Model

self, out);

self;

n7,
n7,

né6,
né6,

n5,
n5,

n4,
n4,

n3,
n3,

n2,
n2,

(no,
no,
out;
out;
neighbors;
count;
ij;

nl,
nl,

module life
input
output
reg
reg
reg
reg

[7:01]
[3:0]
[3:0]
n3, n2, nl, nO};

assign neighbors = {n7, né6, n5, n4,

always @(neighbors or self) begin

count = 0;
for (i = 0; i < 8; i = i+l) count = count + neighbors[i];
out = (count == 3);
out = out | ((self == 1) & (count == 2));
end
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 10

Hardware Description Languages vs.
Programming Languages

Program structure
1 instantiation of multiple components of the same type
1 specify interconnections between modules via schematic
1 hierarchy of modules (only leaves can be HDL in DesignWorks)

1 Assignment

1 continuous assignment (logic always computes)

1 propagation delay (computation takes time)

1 timing of signals is important (when does computation have its effect)
Data structures

1 size explicitly spelled out - no dynamic structures

1 no pointers
Parallelism

1 hardware is naturally parallel (must support multiple threads)

1 assignments can occur in parallel (not just sequentially)

CSE 370 - Spring 2000 - Hardware Description Languages - 11

Hardware Description Languages and
Combinational Logic

Modules - specification of inputs, outputs, bidirectional, and internal signals

Continuous assignment - a gate's output is a function of its inputs at all
times (doesn't need to wait to be "called")

Propagation delay- concept of time and delay in input affecting gate output
Composition - connecting modules together with wires

Hierarchy - modules encapsulate functional blocks

Specification of don't care conditions (accomplished by setting output to “x")

CSE 370 - Spring 2000 - Hardware Description Languages - 12

Hardware Description Languages and
Sequential Logic

1 Flip-flops
1 representation of clocks - timing of state changes
1 asynchronous vs. synchronous
I FSMs
1 structural view (FFs separate from combinational logic)
1 behavioral view (synthesis of sequencers)
1 Data-paths = ALUs + registers
1 use of arithmetic/logical operators
1 control of storage elements
1 Parallelism
1 multiple state machines running in parallel

1 Sequential don't cares

CSE 370 - Spring 2000 - Hardware Description Languages - 13

Flip-flop in Verilog

1 Use always block's sensitivity list to wait for clock edge

module dff (clk, d, q);

input clk, d;
output qg;
reg qi

always @ (posedge clk)
q=d;

endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 14

More Flip-flops

1 Synchronous/asynchronous reset/set
1 single thread that waits for the clock
1 three parallel threads — only one of which waits for the clock

module dff (clk, s, r, d, q); module dff (clk, s, r, d, q);
input clk, s, r, d; input «clk, s, r, d;
output g; output g;
reg q; reg q;
always @(posedge clk) always @(posedge reset)

if (reset) g = 1'b0; g = 1'b0;
else if (set) g = 1'bl; always @ (posedge set)
else q = d; g = 1'bl;
always @ (posedge clk)
endmodule q = d;
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 15

Structural View of an FSM

1 Traffic light controller: two always blocks - flip-flops separate from logic

module FSM (HL, FL, ST, clk, C, TS, TL);

output [2:0] HL, FL; reg [2:0] HL, FL;
output ST; reg ST;

input clk;

input C, TS, TL;

reg [1:0] present_state;

reg [1:0] next_state;

initial begin HL = 3'b001; FL = 3'bl00; present_state = 2'b00; end

always @(posedge clk) // registers
present_state = next_state;

always @(present_state or C or TS or TL)
// compute next-state and output logic whenever state or inputs change
// put equations here for next_ state[1:0], HL[2:0], FL[2:0], and ST
// as functions of C, TS, TL, and present state[1:0]
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 16

Behavioral View of an FSM

1 Specification of inputs, outputs, and state elements

module FSM(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);

output HR;
output HY;

tput HG; .)
Output FR: ‘define highwaygreen 6’b001100
OUtPUt FYi ‘define highwayyellow 6'b010100
Output FG, ‘define farmroadgreen 6'b100001
N : ‘define farmroadyellow 6'b100010
output ST;
input TS;
input TL;)
input C: assign HR = state[6];
input réset~ assign HY = statel[5];
ingut Clk; ' assign HG = statel[4];

assign FY = statel[2
assign FG = state(l

i

reg [6:1] state;

]

]
assign FR = state[3];

]

]
reg ST;

i

specify state bits and codes
for each state as well as
connections to outputs

CSE 370 - Spring 2000 - Hardware Description Languages - 17

Behavioral View of an FSM (cont’d)

initial begin state = ‘highwaygreen; ST = 0; end

always @ (posedge Clk) case statement

begin
It (reset) triggerred by
begin state = ‘highwaygreen; ST clock edge
else
begin
ST = 0;
case (state)
‘highwaygreen:
if (TL & C) begin state = ‘highwayyellow; ST = 1; end
‘highwayyellow:
if (TS) begin state = ‘farmroadgreen; ST = 1; end
‘farmroadgreen:
if (TL | IC) begin state = ‘farmroadyellow; ST = 1; end
‘farmroadyellow:
if (TS) begin state = ‘highwaygreen; ST = 1; end
endcase
end
end
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 18

Timer for Traffic Light Controller

1 Another FSM

module Timer (TS, TL, ST, Clk);
output TS;
output TL;
input ST;
input Clk;
integer value;

assign TS = (value >= 4); // 5 cycles after reset
assign TL = (value >= 14); // 15 cycles after reset
always @ (posedge ST) value = 0; // async reset

always @(posedge Clk) value = value + 1;

endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 19

Complete Traffic Light Controller

1 Tying it all together (FSM + timer)

module main (HR, HY, HG, FR, FY, FG, reset, C, Clk);
output HR, HY, HG, FR, FY, FG;
input reset, C, Clk;

Timer partl (TS, TL, ST, Clk);

FSM part2 (HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 20

Verilog FSM - Reduce 1s example

I Moore machine

‘define zero 0

‘define onel 1 <«—— gstate assignment

‘define twols 2

module reduce (clk, reset, in,
input clk, reset, in;

output out;
reg out;
reg [2:1] state; // state variables

reg [2:1] next_state;

out) ;

1 0
always @ (posedge clk) ®
if (reset) state = ‘zero;
else state = next_state;
0 1
1

CSE 370 - Spring 2000 - Hardware Description Languages - 21

Moore Verilog FSM (cont’d)

always @(in or state)
‘\ crucial to include

case (state)

S all signals that are
Zero: .
// last input was a zero InpUt to state and
begin output equations
if (in) next_state = ‘onel;
else next state = ‘zero;
end
‘onel: note that output only
// we've seen one 1 depends on state
begin
if (in) next_state = ‘twols;
else next state = ‘zero;
end
‘twols: always @(state)
// we’'ve seen at least 2 ones case (state)
begin ‘zero: out = 0;
if (in) next_state = ‘twols; ‘onel: out = 0;
else next state = ‘zero; ‘twols: out = 1;
end endcase
endcase

endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 22

Mealy Verilog FSM

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
‘register state; // state variables
reg next_state;

always @ (posedge clk)
if (reset) state = ‘zero; 0/0
else state = next_state; @
always @(in or state)
case (state) 0

‘zero: // last input was a zero o/0 1/
begin
out = 0;
if (in) next_state = ‘one;
else next_state = ‘zero; 1/1
end
‘one: // we've seen one 1
if (in) begin
next state = ‘one; out = 1;
end else begin
next_state = ‘zero; out = 0;
end
endcase
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 23

Synchronous Mealy Machine

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always @ (posedge clk)

if (reset) state = ‘zero;
else
case (state)
‘zero: // last input was a zero
begin
out = 0;
if (in) state = ‘one;
else state = ‘zero;
end
‘one: // we've seen one 1
if (in) begin
state = ‘one; out = 1;
end else begin
state = ‘zero; out = 0;
end
endcase
endmodule

CSE 370 - Spring 2000 - Hardware Description Languages - 24

