Combinational logic implementation

Two-level logic
1 implementations of two-level logic
1 NAND/NOR

Multi-level logic

1 factored forms

1 and-or-invert gates
Time behavior

1 gate delays

1 hazards
Regular logic

1 multiplexors

1 decoders

1 PAL/PLAs

1 ROMs

CSE 370 - Spring 2000 - Combinational Implementation - 1

Implementations of two-level logic

Sum-of-products

1 AND gates to form product terms (minterms)
1 OR gate to form sum

Product-of-sums

1 OR gates to form sum terms (maxterms)
1 AND gates to form product

CSE 370 - Spring 2000 - Combinational Implementation - 2

Two-level logic using NAND gates

I Replace minterm AND gates with NAND gates

1 Place compensating inversion at inputs of OR gate —

oj_ _ o}_ _

CSE 370 - Spring 2000 - Combinational Implementation - 3

Two-level logic using NAND gates (cont’d)

1 OR gate with inverted inputs is a NAND gate
1 de Morgan's: A'+ B' = (AeB)

I Two-level NAND-NAND network
1 inverted inputs are not counted
1 in a typical circuit, inversion is done once and signal distributed

e >
!

CSE 370 - Spring 2000 - Combinational Implementation - 4

Two-level logic using NOR gates

I Replace maxterm OR gates with NOR gates
1 Place compensating inversion at inputs of AND gate —

=L

]

;

D

CSE 370 - Spring 2000 - Combinational Implementation - 5

Two-level logic using NOR gates (cont’d)

1 AND gate with inverted inputs is a NOR gate

1 de Morgan's: A'eB' = (A+ B)
I Two-level NOR-NOR network
1 inverted inputs are not counted

1 in a typical circuit, inversion is done once and signal distributed

=) >

>
e

S

Dl |
)] >

sl

CSE 370 - Spring 2000 - Combinational Implementation - 6

Two-level logic using NAND and NOR gates

I NAND-NAND and NOR-NOR networks

I de Morgan's law: (A + B)' A' e B (A« B)

1 written differently: A+ B (A"« B (A *B)
1 In other words —

I ORis the same as NAND with complemented inputs

I AND is the same as NOR with complemented inputs

I NAND is the same as OR with complemented inputs

I NOR is the same as AND with complemented inputs

S e D o) R e LS
N e

CSE 370 - Spring 2000 - Combinational Implementation - 7

A'+ B
(A" + B

NOR) «—» _JNORY%—

Conversion between forms

1 Convert from networks of ANDs and ORs to networks of NANDs and NORs
1 introduce appropriate inversions ("bubbles")

1 Each introduced "bubble" must be matched by a corresponding "bubble"
1 conservation of inversions
1 do not alter logic function

1 Example: AND/OR to NAND/NAND

e

A
T —_ ~ " |NAND po——,
=Dt 5 — |

- —— Z NAND)—— Z

c_ | c_ |
— NAND o——
D D

CSE 370 - Spring 2000 - Combinational Implementation - 8

Conversion between forms (cont’d)

1 Example: verify equivalence of two forms

Z=[(A *B) «(C D) T

CSE 370 -

=[(A+B) s (C+D) T
[(A+B) +(C+DY)]
(A s B) +(C D) »

Spring 2000 - Combinational Implementation - 9

Conversion between forms (cont’d)

1 Example: map AND/OR
A

—DO:@L

B
i _:D
/ Step 1
conserve
"bubbles"

D
=1 >

network to NOR/NOR network

-

\A

==
o

\C
—_INOR
\D
Step 2
conserve
"bubbles"

CSE 370 - Spring 2000 - Combinational Implementation - 10

Conversion between forms (cont’d)

1 Example: verify equivalence of two forms

=) o —on)-
C::j—::D__ ‘ ’ l_qb__z

\D

NOR

Z={ [(N+B)+(C+D) I'¥
{ (A+B)e(C+D) ¥
(A" +BY + (C + DY

(AeB)+ (CeD) »

CSE 370 - Spring 2000 - Combinational Implementation - 11

Multi-level logic

I x=ADF + AEF + BDF + BEF + CDF + CEF + G
1 reduced sum-of-products form — already simplified
1 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
1 25 wires (19 literals plus 6 internal wires)
I x=(A+B+C)(D+E)F + G
1 factored form — not written as two-level S-o-P
I 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
1 10 wires (7 literals plus 3 internal wires)

A —_

o) O-—1

D —— | ‘_I E -
D— _

F |

G

CSE 370 - Spring 2000 - Combinational Implementation - 12

Conversion of multi-level logic to NAND gates

I F=A(B+CD)+BC
original
AND-OR
network

introduction and
conservation of
bubbles

redrawn in terms
of conventional
NAND gates

Level 1

20

Level 2

IUJ‘Dw

Level 3

Level 4

&

wils

7

AW > m 90
A

JL0 O

CSE 370 - Spring 2000 - Combinational Implementation - 13

Conversion of multi-level logic to NORs

C

Level 1 Level 2

Level 3

I F=A(B+CD)+BC c
original .
AND-OR
network A
\C

C
D

introduction and

11

conservation of

f N
|::D

bubbles

A o
B 0
>0
5

B |

redrawn in terms
of conventional

\A

0100

Y

NOR gates
\B]
C

V!

I

CSE 370 - Spring 2000 - Combinational Implementation - 14

Conversion between forms

1 Example
A— A
(a) B (b)
_ F B F
C X C X
D D
original circuit add double bubbles at inputs
A
A X
© B F
c % o B -0 P
\D C X
\D
diStriDUt.e bubbles insert inverters to fix mismatches
some mismatches
CSE 370 - Spring 2000 - Combinational Implementation - 15
AND-OR-invert gates
1 AQI function: three stages of logic — AND, OR, Invert
1 multiple gates "packaged" as a single circuit block
logical concept possible implementation
A_] A
B_| . B:‘ .
c —D_DO_ c— I-DDO_
D_| D:I
AND OR Invert NAND NAND Invert
& J&
2x2 AOI gate - n 3x2 AOI gate - +
symbol _&_ - symbol _&_ -

CSE 370 - Spring 2000 - Combinational Implementation - 16

Conversion to AOIl forms

1 General procedure to place in AOI form
I compute the complement of the function in sum-of-products form
1 by grouping the Os in the Karnaugh map

1 Example: XOR implementation — AxorB=A'B + AB'
I AOIform: F=(A'B' + AB)'

A

©) 1 5 "
_+°’_F
© 5 |®
Bl 1 B

CSE 370 - Spring 2000 - Combinational Implementation - 17

Examples of using AOIl gates

1 Example:
I F=BC+AC +AB A
I F=AB'+AC+B'C 0l 1j1)1
I Implemented by 2-input 3-stack AQI gate clolol 1] o

Il F=A+B)(A+C)Y(B+C)
Il F=B+C)(A"+C)(A"+B)
I Implemented by 2-input 3-stack OAI gate

1 Example: 4-bit equality function
I Z=(A0BO0 + A0' BO')(Al1 B1 + A1' B1")(A2 B2 + A2' B2")(A3 B3 + A3' B3')

each implemented in a single 2x2 AQI gate

CSE 370 - Spring 2000 - Combinational Implementation - 18

Examples of using AOI gates (cont’d)

1 Example: AOI implementation of 4-bit equality function

A J g «————— highif AQ # B0
BO ol n low if AO = B0
=
L&
Al _
Bl ol & + conservation of bubbles
& 1
_3 NOR)--Z
A2— o & ‘ ~of
B2—r + i all inputs are low
& then Ai = Bi, i=0,...,3
7 output Z is high
A3—
B3 9% +
L&

CSE 370 - Spring 2000 - Combinational Implementation - 19

Summary for multi-level logic

1 Advantages
1 circuits may be smaller
1 gates have smaller fan-in
1 circuits may be faster
1 Disadvantages
1 more difficult to design
1 tools for optimization are not as good as for two-level
1 analysis is more complex

CSE 370 - Spring 2000 - Combinational Implementation - 20

Time behavior of combinational networks

1 Waveforms
1 visualization of values carried on signal wires over time
1 useful in explaining sequences of events (changes in value)

1 Simulation tools are used to create these waveforms
1 input to the simulator includes gates and their connections
1 input stimulus, that is, input signal waveforms
1 Some terms
1 gate delay — time for change at input to cause change at output
I min delay — typical/nominal delay — max delay
| careful designers design for the worst case
1 rise time — time for output to transition from low to high voltage
1 fall time — time for output to transition from high to low voltage
1 pulse width — time that an output stays high or stays low between changes

CSE 370 - Spring 2000 - Combinational Implementation - 21

Momentary changes in outputs

1 Can be useful — pulse shaping circuits
1 Can be a problem — incorrect circuit operation (glitches/hazards)

1 Example: pulse shaping circuit
A > _B >D_C >c D |)
I Ale A= 0 l_ F

1 delays matter in function

T 100 L
A |1 | I S
=] 1 —
C I
o] | —
F

D remains high for
three gate delays after]
A changes from low to high pulse 3 gate-delays wide

\ F is not always 0

CSE 370 - Spring 2000 - Combinational Implementation - 22

Oscillatory behavior

; P +
1 Another pulse shaping circuit X

resistor>
<

| A
i D]

close switch

\ initially open switch

undefined
% 100 | 200
L { L L e L L L L L L L L L L L L
A / I I
E
C
(o]
CSE 370 - Spring 2000 - Combinational Implementation - 23
Hazards/glitches

1 Hazards/glitches: unwanted switching at the outputs
1 occur when different paths through circuit have different propagation delays
| as in pulse shaping circuits we just analyzed
1 dangerous if logic causes an action while output is unstable
| may need to guarantee absence of glitches

1 Usual solutions

1 1) wait until signals are stable (by using a clock)
preferable (easiest to design when there is a clock — synchronous design)

1 2) design hazard-free circuits
sometimes necessary (clock not used — asynchronous design)

CSE 370 - Spring 2000 - Combinational Implementation - 24

Types of hazards

—
—

1 Static 1-hazard
1 input change causes output togo from 1toOto 1

1 Static 0-hazard
1 input change causes output togo from0to1to 0

o
= B
o

1 Dynamic hazards N

1 input change causes a double change
fromOtoltoOto1 ORfrom1toOto1to0

IO
o

.l
—

CSE 370 - Spring 2000 - Combinational Implementation - 25

Static hazards

1 Due to a literal and its complement momentarily taking on the same value
1 through different paths with different delays and reconverging

1 May cause an output that should have stayed at the same value
to momentarily take on the wrong value

1 Example: multiplexer

é%:Dl:—}F S
Bﬁt:Dj SF B

S hazard

static-0 hazard static-1 hazard
CSE 370 - Spring 2000 - Combinational Implementation - 26

Dynamic hazards

1 Due to the same versions of a literal taking on opposite values
1 through different paths with different delays and reconverging

1 May cause an output that was to change value
to change 3 times instead of once

1 Example: A

ey ol
Cijf i

—I_L[_ —LI_[_ hazard

dynamic hazards

CSE 370 - Spring 2000 - Combinational Implementation - 27

Making connections

1 Direct point-to-point connections between gates
1 wires we've seen so far

1 Route one of many inputs to a single output --- multiplexer
1 Route a single input to one of many outputs --- demultiplexer

e e I

— — 7

multiplexer demultiplexer 4x4 switch

CSE 370 - Spring 2000 - Combinational Implementation - 28

Mux and demux

1 Switch implementation of multiplexers and demultiplexers
1 can be composed to make arbitrary size switching networks
1 used to implement multiple-source/multiple-destination interconnections

*—0

CSE 370 - Spring 2000 - Combinational Implementation - 29

Mux and demux (cont'd)

1 Uses of multiplexers/demultiplexers in multi-point connections

AO Al BO Bl
Sa _| MUX | | MUX |_ Sb multiple input sources

A4 A4

A B
Sum
A4

Ss —| DEMUX multiple output destinations
SO S1

CSE 370 - Spring 2000 - Combinational Implementation - 30

Multiplexers/selectors

1 Multiplexers/selectors: general concept
1 2" data inputs, n control inputs (called "selects"), 1 output
1 used to connect 2" points to a single point
1 control signal pattern forms binary index of input connected to output

Alz L I, A|Z
0 |1 0 0 o010
Z=A IO +A Il 0 0 0 1 0
1]
0 1 0|1
0 1 1|0
1 0 0]0
functional form 1 0 111
logical form 1 1 0|1
two alternative forms 11 111
for a 2:1 Mux truth table
CSE 370 - Spring 2000 - Combinational Implementation - 31
Multiplexers/selectors (cont'd)
1 2:1 mux: Z=AI0+AI1
1 4:1 mux: Z=A'B'I0O+A'BI1+AB'I2+ABI3
1 8:1 mux: Z=A'B'CI0O+A'B'CI1+A'BCI2+A'BCI3 +
AB'CI4+ABCI5 +ABC'I6 +ABCI7
1 Ingeneral, Z = 22”-1 (mI,)
' k=0 HTkk 10—»
1 in minterm shorthand form for a 2™:1 Mux E::
I3— 81
14— mux | ¢
10— I5—
I1I—» 4:1 16—
10— 21 | 2— mux | ¢ I7—»

11— mfx 13— LL ILT

CSE 370 - Spring 2000 - Combinational Implementation - 32

Gate level implementation of muxes

I 2:1 mux

I 4:1 mux

o e

|11

|11

>l

|11

o

|11

CSE 370 - Spring 2000 - Combinational Implementation - 33

Cascading multiplexers

1 Large multiplexers can be implemented by cascading smaller ones

10— 8:1
I1—p 41 mux
12— mux 1
BT T],
mux
14—
15— 41
I6—" mu
17 —p
B C A

control signals B and C simultaneously choose
one of 10, I1, 12, I3 and one of 14, I5, 16, 17

control signal A chooses which of the
upper or lower mux's output to gate to Z

10
1

12

14
15

17

alternative
implementation

—p

I
4

—p

—p

—»Z

—p

CSE 370 - Spring 2000 - Combinational Implementation - 34

P 21 8:1
mux mux
211
mux L>_> 4:1

g N _It: mux
mux

> 211
mux
C A B

Multiplexers as general-purpose logic

I A 2™M:1 multiplexer can implement any function of n variables
I with the variables used as control inputs and
I the data inputs tiedto O or 1
I in essence, a lookup table

1 Example:
I F(AB,C)=m0+ m2+ m6 + m7
= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C") + A'B(C') + AB'(0) + AB(1)

PPRPOOOROR
| |
~NOoO O~ WNEO

8:1 MUX

S2 S1 SO

—> F

CSE 370 - Spring 2000 - Combinational Implementation - 35

A B C

Multiplexers as general-purpose logic (cont’d)

1 ATl multiplexer can implement any function of n variables

I with n-1 variables used as control inputs and
I the data inputs tied to the last variable or its complement

1 Example:
I F(AB,C) =m0+ m2+ m6 + m7
= A'B'C' + ABC' + ABC' + ABC
= A'B'(C") + A'B(C") + AB'(0) + AB(1)

1 —o
P By A B C|F
A 0 00 [I o _b
o s 0o 0|1 o0 < .
o 14 g1mux —> F 0 1]0 [1 STl aimux |y
o &% 0 1|1 o °
1 e 1 0 (0 [0, £ s1 so
14 1 0|1 |o]
S2 S1 SO 11]0 11, A B
T 101 |1 |1
A B C

CSE 370 - Spring 2000 - Combinational Implementation - 36

Multiplexers as general-purpose logic (cont’d)

I Generalization L L 1[4 F
n-1 mux control 0 four possible
variables 1 configurations

1

1 of truth table rows
l can be expressed
1

single mux data
as a function of I,

variable

1 Example: F(A,B,C,D) can be implemented by an 8:1 MUX

A

._.
o]
—
—

choose A,B,C as control

81 MUX [
variables

= ||[=
=]|[e
o l|[e
NIE
lw)
Ugogroor
|
~NoO O WNREO

C multiplexer implementation —

S2 S1 SO

B

A B C

CSE 370 - Spring 2000 - Combinational Implementation - 37

Demultiplexers/decoders

1 Decoders/demultiplexers: general concept
1 single data input, n control inputs, 2" outputs

1 control inputs (called “selects” (S)) represent binary index of output to
which the input is connected

1 data input usually called “enable” (G)

1:2 Decoder: 3:8 Decoder:
00=Ge & 00 =Ge S2'e S1'e SO’
O1=Ge S Ol =Ge S2'e S1'¢ S0
02=Ge S2'e¢ S1 oSO’
2:4 Decoder: 03 =Ge S2'e¢ S1 S0
O0=Ge S1'e SO’ 04=Ge S2 e S1'e SO’
Ol1=Ge S1'e SO O5=Ge S2 e S1'eS0
02=Ge S1 o SO’ 06 =Ge S2 e S1 S0’
03=Ge S1 e SO 07 =Ge S2 ¢ S1 S0

CSE 370 - Spring 2000 - Combinational Implementation - 38

Gate level implementation of demultiplexers

I 1:2 decoders active-high active-low
enable enable

1 2:4 decoders

° 1o
active-high
enable |)—O

° o
active-low
enable —q -0t

5 55

S1 S0 S1 S0

CSE 370 - Spring 2000 - Combinational Implementation - 39

Demultiplexers as general-purpose logic

1 A n:2" decoder can implement any function of n variables
1 with the variables used as control inputs
1 the enable inputs tied to 1 and
1 the appropriate minterms summed to form the function

—> AB'C'

—> A'B'C

—> A'BC' demultiplexer generates appropriate
—»> A'BC minterm based on control signals
— AB'C' (it "decodes" control signals)
— AB'C

—» ABC'

—» ABC

"1"—> 3.8 DEC

N
iy

n—S\m\m.pr.-no

»>—wn
w—

CSE 370 - Spring 2000 - Combinational Implementation - 40

Demultiplexers as general-purpose logic (cont’d)

I FI=ABCD+ABCD+ABCD
I F2=ABCD +ABC
I F3=(A'+B +C +D)

> ABCD'
—»A'BCD
—»A'B'CD

—»ABCD'
—»A'BCD——
—» A'BCD'
—»A'BCD
—»AB'C'D' _ED, 2
—»AB'CD

10 |—ABCD'
11 |—ABCD
12 |—ABCD'

13+—ABC'D
14 —»ABCD'

15—»ABCD _._‘ So— F3

T
ABCD

Enable —» ‘[})ég

OLCONOTUVTA,WNKFHO

CSE 370 - Spring 2000 - Combinational Implementation - 41

Cascading decoders

1 5:32 decoder

I 1x2:4 decoder =3 ABCDE e
1 4x3:8 decoders %:: §:: A'BC'DE'
N | a.
3:8 DEC; | 3:8 DEC] |5
5> 51—
6 61—
— shl ™ s1 s
F —» 2:4DEC 17
s1 s 3%
| | — 0[—» ABCDFE
A B —> 1—»
—> 2—>
Y — L » 3l—>
8 DEC} [8 PEC
—> 51—
6 —> 6/—>
o of > ABCDE & off—> ABCDE
C D E C D E

CSE 370 - Spring 2000 - Combinational Implementation - 42

Programmable logic arrays

1 Pre-fabricated building block of many AND/OR gates

actually NOR or NAND
"personalized" by making or breaking connections among the gates
programmable array block diagram for sum of products form

inputs
A A4 A4
AND product] R
array array
terms
outputs
L] L] L]
vy v

CSE 370 - Spring 2000 - Combinational Implementation - 43

Enabling concept

1 Shared product terms among outputs

example:

FO=A +B'C

FI=AC + AB
F2=B'C + AB
F3=BC + A

personality matrix

input side:

1 = uncomplemented in term
0 = complemented in term

product | inputs outputs — = does not participate

term A B C [FO F1 F2 F3 i
AB i 1 - Jo 1 1 o0 output side:
B'C -0 110 o o 1 1 = term connected to output
AC 1 - o0olo 1 0o o 0 = no connection to output
B'C -0 01 0 1 O
A 1 - — |1 o o 1 reuse of terms

CSE 370 - Spring 2000 - Combinational Implementation - 44

Before programming

1 All possible connections are available before "programming”
1 in reality, all AND and OR gates are NANDs

— —

vy

URUASAVAY

CSE 370 - Spring 2000 - Combinational Implementation - 45

After programming

1 Unwanted connections are "blown"
1 fuse (normally connected, break unwanted ones)
1 anti-fuse (normally disconnected, make wanted connections)
A B C

v

o] o]

T \AB
BC

—)
N AC

-)
[\B/C

S

A

VY4

| |
CSE 370 - Spring 2000 - Combinational Implementation - 46

Alternate representation for high fan-in structures

1 Short-hand notation so we don't have to draw all the wires

1 x signifies a connection is present and perpendicular signal is an input
to gate

notation for implementing

N vavav: FO=AB + A'B'

F1=CD + CD

R
=
A BCD
L/
= WY —
AB
» =
L/ A'B
ViV -
L/ ~
C'D
L
AB+A'B'
CD'+CD
CSE 370 - Spring 2000 - Combinational Implementation - 47
Programmable logic array example
I Multiple functions of A, B, C full decoder as for memory address
1 F1=ABC A BC / bits stored in memory
I 2=A+B+C —\7—\7—\7
1 3=A'B'C); A'B'C
1 FA=A+B'+C } AB'C
1 F5 = Axor B xor C) ABC
|
1 F6 = A xnor B xnor C [_\ A'BC
| —
R 1~
AB'C
A B C|F1F2 F3F4 F5 F6 '[=<
000001100) AB'C
001/0 1 01 1 1) ABC'
010010111 | —
01101 0100)
100010111 [ABC
101010100
110010100
111|111 00 11 F1F2F3F4Eg

CSE 370 - Spring 2000 - Combinational Implementation - 48

PALs and PLAs

1 Programmable logic array (PLA)
I what we've seen so far
1 unconstrained fully-general AND and OR arrays

1 Programmable array logic (PAL) e
1 constrained topology of the OR array _\I'Z M _\I'Z_\I'Z

1 innovation by Monolithic Memories
1 faster and smaller OR plane

a given column of the OR array
has access to only a subset of
the possible product terms

JUJUUUUU

¢
T
T
G o

CSE 370 - Spring 2000 - Combinational Implementation - 49

PALs and PLAs: design example

1 BCD to Gray code converter

A A

A B C D|lwW X Y Z

0 0 0 0[]0 0 0 0 0 lolx i 0L X0

0 0 0 11/0 0 0 1 o lln x|l 1]l o1 xjol]y,

S IS O G 1 = g A

01 0 00 1 1 0 Lo [l [l 00X X

0 1 0 1 1 1 1 0 B B

0 1 1 0 1 0 1 0

0 1 1 1 1 0 1 1 K-map for W K-map for X

1 0 0 O 1 0 0 1 A A

1 0 0 1 1 0 0 O : +

1 0 1 - |- - - - o [[x]lo 0 lox|1]

i o1 |xfol], [1]o]x]o b

minimized functions: cpifl [Xyix CO_LQ%
11| | X/ 1]{ 0 ||

W=A+BD+BC —%— 5 n £

X=BC

Y=B+C :)

Z=ABCD+BCD+AD +BCD' K-map for Y K-map for Z

CSE 370 - Spring 2000 - Combinational Implementation - 50

PALs and PLAs: design example (cont’d)

1 Code converter: programmed PLA
A B CD

T S
%2l \% _\b \%: ,—\
L/ A
) BD
(R
) BC
(R
) BC'
(R
L/ B
(R
L/ C
(R
L/ AB'CD
L/
= BCD
) AD
Rj v v V ”

w X Y Z

minimized functions:

W=A+BD+BC
X=BC

Z=ABCD+BCD+AD +B'CD'

not a particularly good
candidate for PAL/PLA
implementation since no terms
are shared among outputs

however, much more compact
and regular implementation
when compared with discrete
AND and OR gates

CSE 370 - Spring 2000 - Combinational Implementation - 51

PALs and PLAs: design example (cont’d)

1 Code converter: programmed PAL

4 product terms
per each OR gate

ABCD
O N N
M
™
L) A
) BD
) BC
Y
) 0
) BC'
N
L 0
Y
J 0
Y
0
L) B
™
L) c
Y
L) 0
)
Q
L A'B'CD
L/ BCD
= AD'

ST

va
z

CSE 370 - Spring 2000 - Combinational Implementation - 52

PALs and PLAs: design example (cont’d)

1 Code converter: NAND gate implementation
1 loss or regularity, harder to understand
1 harder to make changes

CSE 370 - Spring 2000 - Combinational Implementation - 53

PALs and PLAs: another design example

ABCD
. N
1 Magnitude comparator VAY V& —
A \) ABCD'
) R
DOOO |0|111_ L A'BCD
oooD 1o |1) ABCD
clolo|[i]o L«]o |) AB'CD'
0o]o AR 3 AC
B —s— =\
) AC
K-map for EQ K-map for NE _J\ BD
[
A . |=< BD'
olololo 0 15? — ABD
R
B'CD
1]o]o o olos sl %
1o [L] clojo]o]o % ABC
1l1]fo]o 0o [[1]]o) BC'D'

B Ejv U Ej
K-map for LT K-map for GT

EQ NE LT GT
CSE 370 - Spring 2000 - Combinational Implementation - 54

Read-only memories

1 Two dimensional array of 1s and Os word lines (only one
1 entry (row) is called a "word" }i;’fﬂ;ﬁt}ff fﬁg?r °
1 width of row = word-size
1 index is called an "address" 14 lAI 14 14
I address is input $ 2 %
I selected word is output 2" S G .

decoder ! I"';J.___ l'i

i

0
internal organization | | | | | | N
0 n-1
Address

bit lines (normally pulled to 1 through
resistor — selectively connected to 0
by word line controlled switches)

word[i] = 0011

word[j] = 1010

CSE 370 - Spring 2000 - Combinational Implementation - 55

ROMs and combinational logic

1 Combinational logic implementation (two-level canonical form) using a ROM

FO=A'B'C + ABC + AB'C
F1=A'B'C + ABC + ABC
F2=A'B'C + ABC + AB'C
F3=A'BC + AB'C +ABC

A B C|FO F1 F2 F3

000[0 0 1 O ROM

0011 1 1 0 8 words x 4 bits/word

0100 1 00

0110 0 0 1

1001 0 1 1 T T T

101|121 0 0 O

1100 0 0 1 A B C FOFLF2F3

11110 1 0 0 address outputs
truth table block diagram

CSE 370 - Spring 2000 - Combinational Implementation - 56

ROM structure

1 Similar to a PLA structure but with a fully decoded AND array
1 completely flexible OR array (unlike PAL)

n address lines

inputs
A4 A4 A4

vy

memory

decoder 21 word array
(2" words

by m bits)

lines

outputs

vy v
m data lines

CSE 370 - Spring 2000 - Combinational Implementation - 57

ROM vs. PLA

1 ROM approach advantageous when
1 design time is short (no need to minimize output functions)
1 most input combinations are needed (e.g., code converters)
1 little sharing of product terms among output functions
1 ROM problems
1 size doubles for each additional input
1 can't exploit don't cares
1 PLA approach advantageous when
1 design tools are available for multi-output minimization
1 there are relatively few unique minterm combinations
1 many minterms are shared among the output functions
1 PAL problems
1 constrained fan-ins on OR plane

CSE 370 - Spring 2000 - Combinational Implementation - 58

Regular logic structures for two-level logic

1 ROM - full AND plane, general OR plane
1 cheap (high-volume component)
1 can implement any function of n inputs
1 medium speed
1 PAL - programmable AND plane, fixed OR plane
1 intermediate cost
1 can implement functions limited by number of terms

1 high speed (only one programmable plane that is much smaller than
ROM's decoder)

1 PLA - programmable AND and OR planes
I most expensive (most complex in design, need more sophisticated tools)
1 can implement any function up to a product term limit
1 slow (two programmable planes)

CSE 370 - Spring 2000 - Combinational Implementation - 59

Regular logic structures for multi-level logic

1 Difficult to devise a regular structure for arbitrary connections between a
large set of different types of gates

1 efficiency/speed concerns for such a structure

1 in 467 you'll learn about field programmable gate arrays (FPGAs) that
are just such programmable multi-level structures

| programmable multiplexers for wiring
| lookup tables for logic functions (programming fills in the table)
| multi-purpose cells (utilization is the big issue)
1 Use multiple levels of PALs/PLAs/ROMs
1 output intermediate result
1 make it an input to be used in further logic

CSE 370 - Spring 2000 - Combinational Implementation - 60

Combinational logic implementation summary

1 Multi-level logic
1 conversion to NAND-NAND and NOR-NOR networks
1 transition from simple gates to more complex gate building blocks
1 reduced gate count, fan-ins, potentially faster
I more levels, harder to design

1 Time response in combinational networks
1 gate delays and timing waveforms
1 hazards/glitches (what they are and why they happen)

1 Regular logic

1 multiplexers/decoders

I ROMs

1 PLAs/PALs

1 advantages/disadvantages of each

CSE 370 - Spring 2000 - Combinational Implementation - 61

