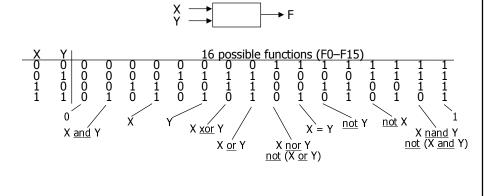
Combinational logic

- Logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, . . .
 - minimal set
- Axioms and theorems of Boolean algebra
 - I proofs by re-writing
 - proofs by perfect induction
- Gate logic
 - I networks of Boolean functions
 - time behavior
- Canonical forms
 - two-level
 - I incompletely specified functions
- Simplification
 - I Boolean cubes and Karnaugh maps
 - I two-level simplification

CSE 370 - Spring 2000 - Combinational Logic - 1

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - in general, there are 2**(2**n) functions of n inputs



Cost of different logic functions

- Different functions are easier or harder to implement
 - I each has a cost associated with the number of switches needed
 - 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
 - X (F3) and Y (F5): require 0 switches, output is one of inputs
 - X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
 - X nor Y (F4) and X nand Y (F14): require 4 switches
 - X or Y (F7) and X and Y (F1): require 6 switches
 - X = Y (F9) and $X \oplus Y$ (F6): require 16 switches
 - I thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

CSE 370 - Spring 2000 - Combinational Logic - 3

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - I For example, implementing X and Y is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
 - NOT is just a NAND or a NOR with both inputs tied together

0 0 1 1 0 0 1	
1 1 0 1 1 0	

I and NAND and NOR are "duals", that is, its easy to implement one using the other

$$X \underline{\text{nand}} Y \equiv \underline{\text{not}} ((\underline{\text{not}} X) \underline{\text{nor}} (\underline{\text{not}} Y))$$

 $X \underline{\text{nor}} Y \equiv \underline{\text{not}} ((\underline{\text{not}} X) \underline{\text{nand}} (\underline{\text{not}} Y))$

- But lets not move too fast . . .
 - I lets look at the mathematical foundation of logic

An algebraic structure

- An algebraic structure consists of
 - I a set of elements B
 - binary operations { + , }
 - and a unary operation { ' }
 - I such that the following axioms hold:

```
1. the set B contains at least two elements, a, b, such that a \circ b
2. closure: a + b is in B
3. commutativity: a + b = b + a a \cdot b = b \cdot a
4. associativity: a + (b + c) = (a + b) + c a \cdot (b \cdot c) = (a \cdot b) \cdot c
5. identity: a + 0 = a a \cdot 1 = a
6. distributivity: a + (b \cdot c) = (a + b) \cdot (a + c) a \cdot (b + c) = (a \cdot b) + (a \cdot c)
7. complementarity: a + a' = 1 a \cdot a' = 0
```

CSE 370 - Spring 2000 - Combinational Logic - 5

Boolean algebra

- Boolean algebra
 - $B = \{0, 1\}$
 - I + is logical OR, is logical AND
 - ' is logical NOT
- All algebraic axioms hold

Logic functions and Boolean algebra

■ Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •

X	Y	X • Y
0	0	0
0	1	0
1	0	0
1	1	1

Х	Υ	X'	X' • Y
0	0	1	0
0	0 1 0	1 0 0	1
1	0	0	0
1	1	0	0

$(X \bullet Y) + (X' \bullet Y')$	(X • Y	X' ● Y'	X • Y	Y'	X'	Υ	Х
	1	1	0	1	1	0	0
(V.V).	0	0	0	0	1	1	0
(X•Y)+	0	0	0	1	0	0	1
_	1	0	1	0	0	1	1

$$(X \bullet Y) + (X' \bullet Y') \equiv X = Y$$

Boolean expression that is true when the variables X and Y have the same value and false, otherwise

X, Y are Boolean algebra variables

CSE 370 - Spring 2000 - Combinational Logic - 7

Axioms and theorems of Boolean algebra

identity

1.
$$X + 0 = X$$

1D.
$$X \cdot 1 = X$$

null

2.
$$X + 1 = 1$$

2D.
$$X \cdot 0 = 0$$

idempotency:

3.
$$X + X = X$$

3D.
$$X \bullet X = X$$

■ involution:

■ complementarity:

5.
$$X + X' = 1$$

5D.
$$X \cdot X' = 0$$

commutativity:

6.
$$X + Y = Y + X$$

6D.
$$X \bullet Y = Y \bullet X$$

associativity:

7.
$$(X + Y) + Z = X + (Y + Z)$$
 7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

7D
$$(X \bullet Y) \bullet 7 = X \bullet (Y \bullet 7)$$

Axioms and theorems of Boolean algebra (cont'd)

distributivity:

8.
$$X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$$
 8D. $X + (Y \bullet Z) = (X + Y) \bullet (X + Z)$

■ uniting:

9.
$$X \cdot Y + X \cdot Y' = X$$
 9D. $(X + Y) \cdot (X + Y') = X$

absorption:

10.
$$X + X \cdot Y = X$$

11. $(X + Y') \cdot Y = X \cdot Y$
110. $(X \cdot Y') + Y = X + Y$

■ factoring:

12.
$$(X + Y) \cdot (X' + Z) =$$
 16D. $X \cdot Y + X' \cdot Z =$ $(X + Z) \cdot (X' + Y)$

concensus:

13.
$$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = 17D. (X + Y) \bullet (Y + Z) \bullet (X' + Z) = X \bullet Y + X' \bullet Z (X + Y) \bullet (X' + Z)$$

CSE 370 - Spring 2000 - Combinational Logic - 9

Axioms and theorems of Boolean algebra (cont')

de Morgan's:

14.
$$(X + Y + ...)' = X' \cdot Y' \cdot ...$$
 12D. $(X \cdot Y \cdot ...)' = X' + Y' + ...$

■ generalized de Morgan's:

15.
$$f'(X1,X2,...,Xn,0,1,+,\bullet) = f(X1',X2',...,Xn',1,0,\bullet,+)$$

■ establishes relationship between • and +

Axioms and theorems of Boolean algebra (cont')

- Duality
 - I a dual of a Boolean expression is derived by replacing
 - by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 - I any theorem that can be proven is thus also proven for its dual!
 - I a meta-theorem (a theorem about theorems)
- duality:

16.
$$X + Y + ... \Leftrightarrow X \bullet Y \bullet ...$$

generalized duality:

17. f (X1,X2,...,Xn,0,1,+,•)
$$\Leftrightarrow$$
 f(X1,X2,...,Xn,1,0,•,+)

- Different than deMorgan's Law
 - I this is a statement about theorems
 - I this is not a way to manipulate (re-write) expressions

CSE 370 - Spring 2000 - Combinational Logic - 11

Proving theorems (rewriting)

- Using the axioms of Boolean algebra:
 - I e.g., prove the theorem: $X \cdot Y + X \cdot Y' = X$

distributivity (8)
$$X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$$
 complementarity (5) $X \cdot (Y + Y') = X \cdot (1)$ identity (1D) $X \cdot (1) = X \Rightarrow$

I e.g., prove the theorem:
$$X + X \cdot Y = X$$

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
 - e.g., de Morgan's:

 $(X + Y)' = X' \cdot Y'$ NOR is equivalent to AND with inputs complemented

Χ	Υ	X'	Υ'	(X + Y)'	X' • Y'
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

 $(X \bullet Y)' = X' + Y'$ NAND is equivalent to OR with inputs complemented

Χ	Υ	X'	Y'	(X • Y)'	X' + Y'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

CSE 370 - Spring 2000 - Combinational Logic - 13

A simple example

- 1-bit binary adder
 - I inputs: A, B, Carry-in
 - I outputs: Sum, Carry-out

Α	В	Cin	S	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify Boolean expressions
 - e.g., full adder's carry-out function (same rules apply to any function)

Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin

= (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin

= (1) B Cin + A B' Cin + A B Cin' + A B Cin

= B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin

= B Cin + A (B' + B) Cin + A B Cin' + A B Cin

= B Cin + A (1) Cin + A B Cin' + A B Cin

= B Cin + A Cin + A B (Cin' + Cin)

= B Cin + A Cin + A B (1)= B Cin + A Cin + A B

CSE 370 - Spring 2000 - Combinational Logic - 15

From Boolean expressions to logic gates

$$\blacksquare \quad \mathsf{NOT} \quad \mathsf{X'} \qquad \overline{\mathsf{X}} \qquad \mathord{\sim} \mathsf{X}$$

$$\begin{array}{c|c} X & Y \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$

$$\begin{array}{c|cccc} X & Y & Z \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

$$\blacksquare \quad \mathsf{OR} \qquad \mathsf{X} + \mathsf{Y} \qquad \qquad \mathsf{X} \vee \mathsf{Y}$$

From Boolean expressions to logic gates (cont'd)

XOR
$$X \oplus Y$$

$$Y \longrightarrow Z$$

$$Z \longrightarrow Z$$

$$X \oplus Y \longrightarrow Z$$

X and Y are the same ("equality", "coincidence")

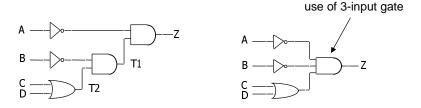
CSE 370 - Spring 2000 - Combinational Logic - 17

From Boolean expressions to logic gates (cont'd)

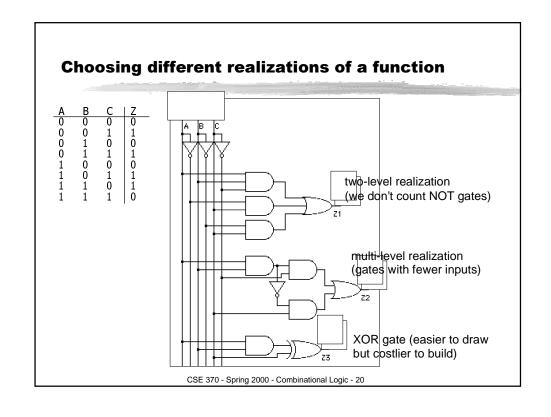
■ More than one way to map expressions to gates

e.g.,
$$Z = A' \cdot B' \cdot (C + D) = (A' \cdot (B' \cdot (C + D)))$$

$$\frac{T2}{T1}$$



Waveform view of logic functions I Just a sideways truth table I but note how edges don't line up exactly I it takes time for a gate to switch its output! time V Not (X & Y) X + Y Not (X & Y) X + Y Not (X + Y) X × or Y Not (X × or Y) I change in Y takes time to "propagate" through gates CSE 370 - Spring 2000 - Combinational Logic - 19



Which realization is best?

- Reduce number of inputs
 - I literal: input variable (complemented or not)
 - I can approximate cost of logic gate as 2 transitors per literal
 - I why not count inverters?
 - I fewer literals means less transistors
 - I smaller circuits
 - I fewer inputs implies faster gates
 - I gates are smaller and thus also faster
 - I fan-ins (# of gate inputs) are limited in some technologies
- Reduce number of gates
 - I fewer gates (and the packages they come in) means smaller circuits
 - I directly influences manufacturing costs

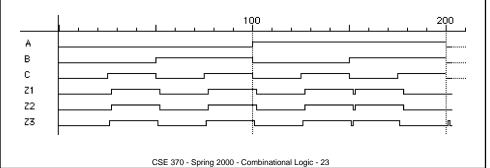
CSE 370 - Spring 2000 - Combinational Logic - 21

Which is the best realization? (cont'd)

- Reduce number of levels of gates
 - I fewer level of gates implies reduced signal propagation delays
 - I minimum delay configuration typically requires more gates
 - I wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
 - I automated tools to generate different solutions
 - I logic minimization: reduce number of gates and complexity
 - I logic optimization: reduction while trading off against delay

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - delays are different
 - I glitches (hazards) may arise
 - I variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent



Implementing Boolean functions

- Technology independent
 - I canonical forms
 - two-level forms
 - multi-level forms
- Technology choices
 - I packages of a few gates
 - I regular logic
 - I two-level programmable logic
 - multi-level programmable logic

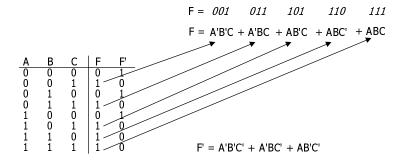
Canonical forms

- Truth table is the unique signature of a Boolean function
- Many alternative gate realizations may have the same truth table
- Canonical forms
 - I standard forms for a Boolean expression
 - I provides a unique algebraic signature

CSE 370 - Spring 2000 - Combinational Logic - 25

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion



Sum-of-products canonical form (cont'd)

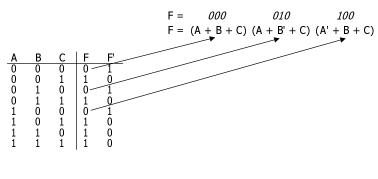
- Product term (or minterm)
 - ANDed product of literals input combination for which output is true
 - I each variable appears exactly once, in true or inverted form (but not both)

Α	В	С	minterms	
0 0 0 0	0 0 1 1	0 1 0 1	A'B'C' m0 A'B'C m1 A'BC' m2 A'BC m3	F in canonical form: $F(A, B, C) = \Sigma m(1,3,5,6,7)$ = m1 + m3 + m5 + m6 + m7 = A'B'C + A'BC + AB'C + ABC' + ABC
_			AB'C' m4 AB'C m5 ABC' m6 ABC m7 notation for	canonical form \neq minimal form $F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'$ $= (A'B' + A'B + AB' + AB)C + ABC'$ $= ((A' + A)(B' + B))C + ABC'$ $= C + ABC'$ $= ABC' + C$ $= AB + C$

CSE 370 - Spring 2000 - Combinational Logic - 27

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion



$$F' = (A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C')$$

Product-of-sums canonical form (cont'd)

- Sum term (or maxterm)
 - ORed sum of literals input combination for which output is false
 - each variable appears exactly once, in true or inverted form (but not both)

<u>A</u>	В	C	maxterms	
0	0	0	A+B+C	Μ0
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	М3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	М6
1	1	1	A'+B'+C'	<u>M</u> 7
				/

F in canonical form:

F(A, B, C) =
$$\Pi$$
M(0,2,4)
= M0 • M2 • M4
= (A + B + C) (A + B' + C) (A' + B + C)

canonical form \neq minimal form

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

short-hand notation for maxterms of 3 variables

CSE 370 - Spring 2000 - Combinational Logic - 29

S-o-P, P-o-S, and de Morgan's theorem

- Sum-of-products
 - I F' = A'B'C' + A'BC' + AB'C'
- Apply de Morgan's

$$I (F')' = (A'B'C' + A'BC' + AB'C')'$$

$$F = (A + B + C) (A + B' + C) (A' + B + C)$$

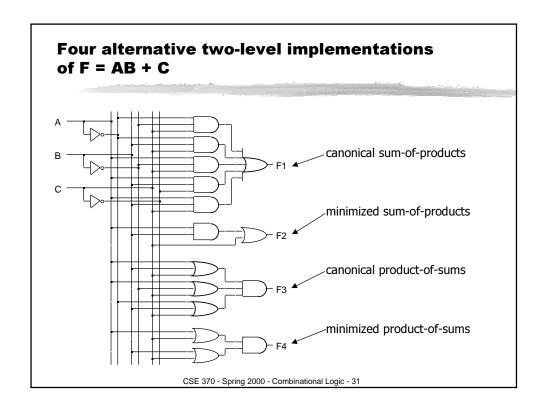
■ Product-of-sums

$$I F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

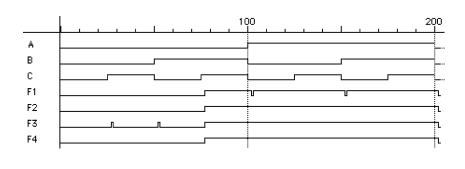
■ Apply de Morgan's

$$I F = A'B'C + A'BC + AB'C + ABC' + ABC$$

 $\ensuremath{\mathsf{CSE}}$ 370 - Spring 2000 - Combinational Logic - 30



- Waveforms are essentially identical
 - except for timing hazards (glitches)
 - delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)



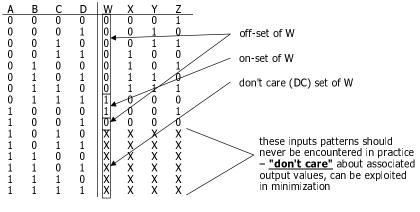
Mapping between canonical forms

- Minterm to maxterm conversion
 - I use maxterms whose indices do not appear in minterm expansion
 - **I** e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - I use minterms whose indices do not appear in maxterm expansion
 - e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F'
 - I use minterms whose indices do not appear
 - **■** e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$
- $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
 - I use maxterms whose indices do not appear
 - **I** e.g., $F(A,B,C) = \Pi M(0,2,4)$
- $F'(A,B,C) = \Pi M(1,3,5,6,7)$

CSE 370 - Spring 2000 - Combinational Logic - 33

Incompleteley specified functions

- Example: binary coded decimal increment by 1
 - **I** BCD digits encode the decimal digits 0-9 in the bit patterns 0000-1001



Notation for incompletely specified functions

- Don't cares and canonical forms
 - I so far, only represented on-set
 - I also represent don't-care-set
 - need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:

```
I = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
```

- $I Z = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
- I Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15
- **I** $Z = \Pi [M(1,3,5,7,9) \bullet D(10,11,12,13,14,15)]$

CSE 370 - Spring 2000 - Combinational Logic - 35

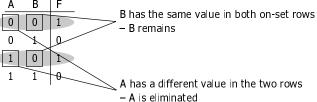
Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
 - exploit don't care information in the process
- Algebraic simplification
 - I not an algorithmic/systematic procedure
 - I how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - I to understand automatic tools and their strengths and weaknesses
 - I ability to check results (on small examples)

The uniting theorem

- Key tool to simplification: A (B' + B) = A
- Essence of simplification of two-level logic
 - I find two element subsets of the ON-set where only one variable changes its value this single varying variable can be eliminated and a single product term used to represent both elements

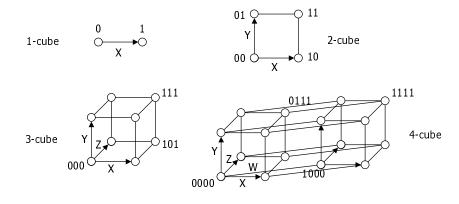
$$F = A'B' + AB' = (A' + A)B' = B'$$



CSE 370 - Spring 2000 - Combinational Logic - 37

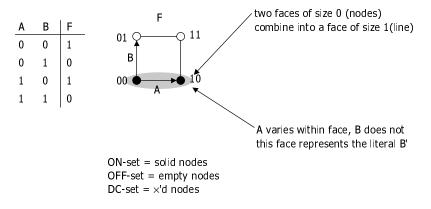
Boolean cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"



Mapping truth tables onto Boolean cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

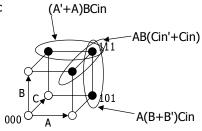


CSE 370 - Spring 2000 - Combinational Logic - 39

Three variable example

■ Binary full-adder carry-out logic

Α	В	Cin	Cou
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

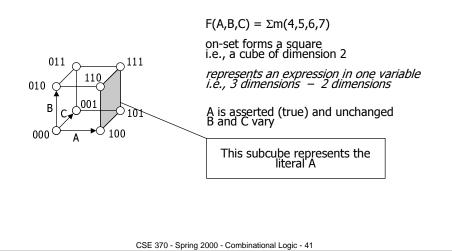


the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout = BCin + AB + ACin

Higher dimensional cubes

■ Sub-cubes of higher dimension than 2



m-dimensional cubes in a n-dimensional Boolean space

- In a 3-cube (three variables):
 - a 0-cube, i.e., a single node, yields a term in 3 literals
 - a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - I a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
 - I an m-subcube within an n-cube (m < n) yields a term with n m literals

Karnaugh maps

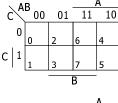
- Flat map of Boolean cube
 - wrap—around at edges
 - I hard to draw and visualize for more than 4 dimensions
 - I virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
 - I guide to applying the uniting theorem
 - I on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

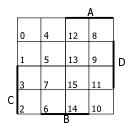
Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

CSE 370 - Spring 2000 - Combinational Logic - 43

Karnaugh maps (cont'd)

- Numbering scheme based on Gray-code
 - l e.g., 00, 01, 11, 10
 - I only a single bit changes in code for adjacent map cells

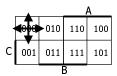


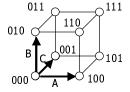


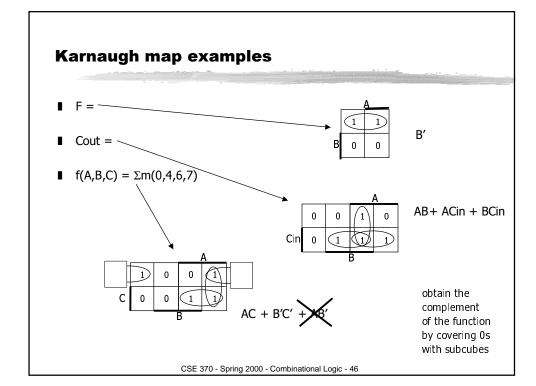
13 = 1101 = ABC'D

Adjacencies in Karnaugh maps

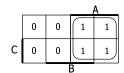
- Wrap from first to last column
- Wrap top row to bottom row



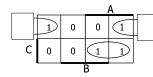




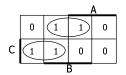
More Karnaugh map examples



$$G(A,B,C) = A$$



$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$



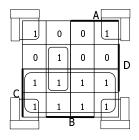
F' simply replace 1's with 0's and vice versa $F'(A,B,C) = \sum m(1,2,3,6) = BC' + A'C$

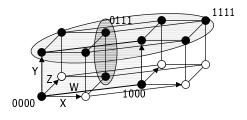
CSE 370 - Spring 2000 - Combinational Logic - 47

Karnaugh map: 4-variable example

■ $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$F = C + A'BD + B'D'$$



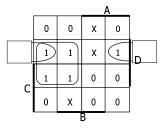


find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh maps: don't cares

- $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - I without don't cares

$$| f = A'D + B'C'D$$

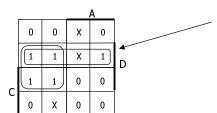


CSE 370 - Spring 2000 - Combinational Logic - 49

Karnaugh maps: don't cares (cont'd)

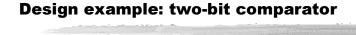
- $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - f = A'D + B'C'D
 - $\mathbf{I} \quad \mathsf{f} = \mathsf{A}'\mathsf{D} + \mathsf{C}'\mathsf{D}$

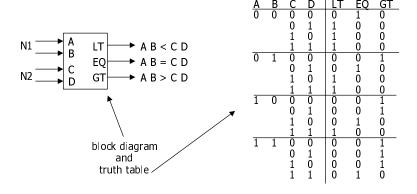
without don't cares with don't cares



by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

don't cares can be treated as 1s or 0s depending on which is more advantageous





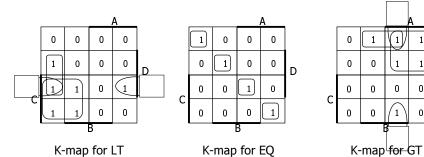
we'll need a 4-variable Karnaugh map for each of the 3 output functions

(1)

1

CSE 370 - Spring 2000 - Combinational Logic - 51

Design example: two-bit comparator (cont'd)

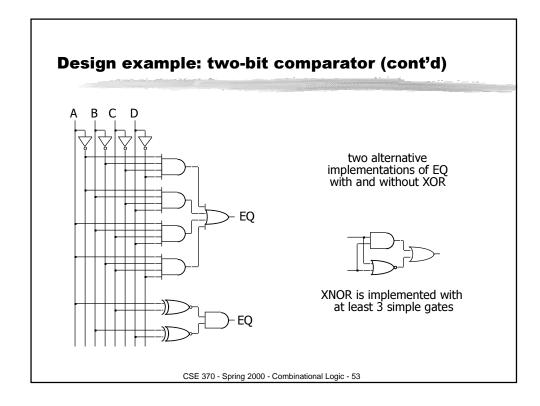


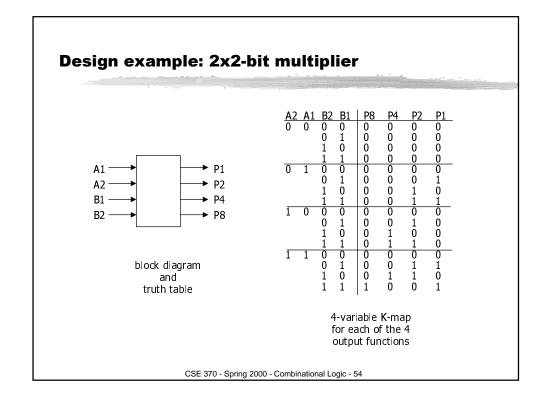
LT = A'B'D + A'C + B'CD

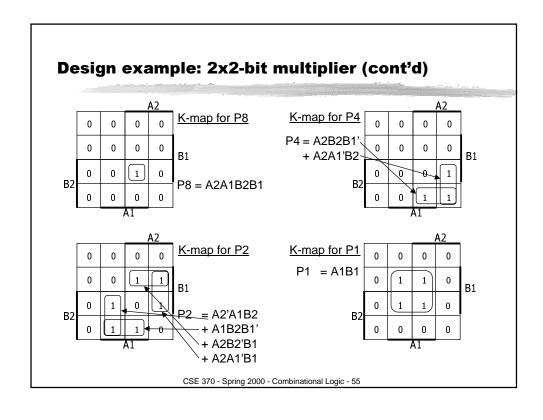
 $EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD' = (A xnor C) \bullet (B xnor D)$

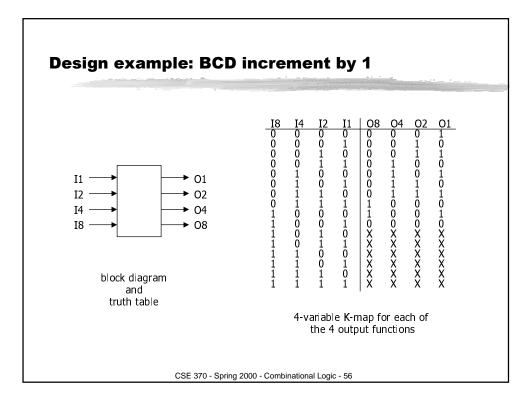
 $\mathsf{GT} \ = \ \mathsf{B} \ \mathsf{C'} \ \mathsf{D'} \ + \ \mathsf{A} \ \mathsf{C'} \ + \ \mathsf{A} \ \mathsf{B} \ \mathsf{D'}$

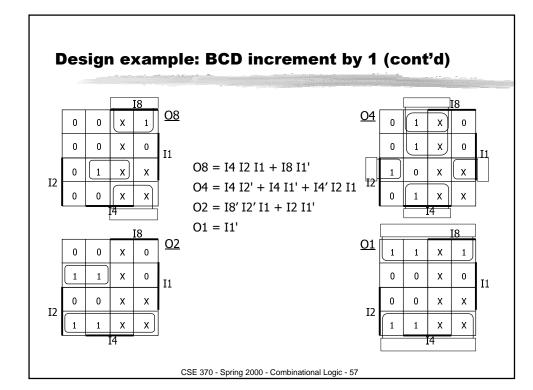
LT and GT are similar (flip A/C and B/D)





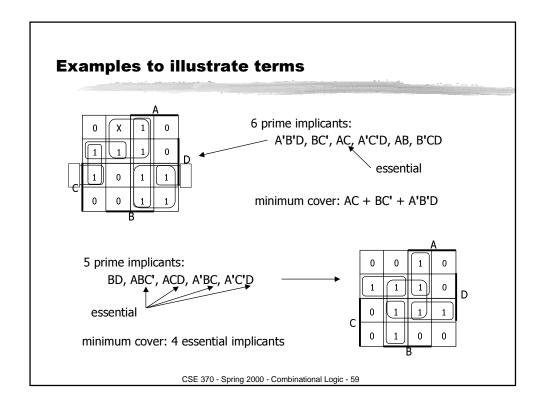






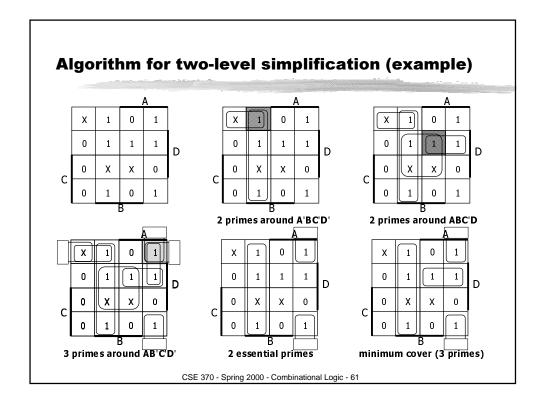
Definition of terms for two-level simplification

- Implicant
 - single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
- Prime implicant
 - I implicant that can't be combined with another to form a larger subcube
- Essential prime implicant
 - I prime implicant is essential if it alone covers an element of ON-set
 - will participate in ALL possible covers of the ON-set
 - I DC-set used to form prime implicants but not to make implicant essential
- Objective:
 - I grow implicant into prime implicants (minimize literals per term)
 - I cover the ON-set with as few prime implicants as possible (minimize number of product terms)



Algorithm for two-level simplification

- Algorithm: minimum sum-of-products expression from a Karnaugh map
 - Step 1: choose an element of the ON-set
 - I Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
 - I consider top/bottom row, left/right column, and corner adjacencies
 - I this forms prime implicants (number of elements always a power of 2)
 - Repeat Steps 1 and 2 to find all prime implicants
 - Step 3: revisit the 1s in the K-map
 - I if covered by single prime implicant, it is essential, and participates in final cover
 - 1 1s covered by essential prime implicant do not need to be revisited
 - I Step 4: if there remain 1s not covered by essential prime implicants
 - I select the smallest number of prime implicants that cover the remaining 1s



Combinational logic summary

- Logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
 - proofs by re-writing and perfect induction
- Gate logic
 - I networks of Boolean functions and their time behavior
- Canonical forms
 - I two-level and incompletely specified functions
- Simplification
 - two-level simplification
- Later
 - I automation of simplification
 - I multi-level logic
 - I design case studies
 - I time behavior