PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CSE 341
Section 4

Autumn 2018
With thanks to Nick Mooney & Spencer Pearson




Today’s Agenda

* Mutual Recursion
* Module System Example
* Practice with Currying and High Order Functions



Mutual Recursion

* What if we need function f to call g, and function g
to call f?

fun earlier x = Unfortunately this
e does not work @
later x

fun later x =

earlier x



Mutual Recursion Workaround

* We can use higher order functions to get this
working

* It works, but there has got to be a better way!

fun earlier £ x =
f x
fun later x =

earlier later x



Mutual Recursion with and

* SML has a keyword for that

* Works with mutually recursive datatype

bindings too _
fun earlier x =

later x
and later x =

earlier x



Module System

* Good for organizing code, and managing
namespaces (useful, relevant)

* Good for maintaining invariants (interesting)



Deja vu?

We have similar things in Java!

It's called interface!



Let’s implement a bank!
A bank should be able...

1. To open a new account
2. To deposit money
3. To withdraw money

public interface BankInterface {

public Account newAccount(String name, double initialDeposite);

public Account deposit(Account account, double amount);
public Account withdraw(Account account, double amount);




Matching signature and struct

Will it match?

string —> string

structure structAl :> sigA =

S EELIGT

int x 1int
fnis => 341



Matching signature and struct

Will it match?

string —> string

structure structA2 :> sigA =



Matching signature and struct

signhature sigA =

Will it match?

string —> string
> structA3 :> sigA =

exception a

type b = real * real

val N =



Matching signature and struct

signature sigB =

Will it match?

structure structBl :> sigB =

SEFUCK
exception a
string *x string

int *x real




Matching signature and struct

signature sigB =

a Will it match?

exception a of 1int
type b = string *x string
type c

string * string

int *x real



Matching signature and struct

signature sigB =

Will it match?

x string

structure structB3 :> sigB =

SURUCT
exception a of 1int
type b = string *x string
datatype @ = cse of 1int




Matching signature and struct

signature sigB =

3 : Will it match?

on a of int

string * string .
structure structB4 :> sigB =

struct
ion a of 1int

pt1
ype b string *x string
§ = int * real




Interesting Examples of Invariants

* Ordering of operations
e e.g. insert, then query

e Data kept in good state
e e.g. fractions in lowest terms

e Policies followed

e e.g. don't allow shipping request without purchase
order



Currying and High Order Functions

* Some examples:
* List.map
e List.filter
e List.foldl



Practice: flatten

e Type:

o ‘Ya list list -> ‘a 1list
e Behavior:

o Does this look familiar?

O Returns concatenation of list of lists.



Code: flatten

fun concat (acc, xXxs) = xXs @ acc

fun flatten xs = List.foldl concat [] Xxs



Alternative 1: op@

fun flatten?2 xs = List.foldl (opR) [] xs

e Does this work? Why/why not?
e This returns the reversed concatenation!



Alternative 2: better style

val flatten3 = List.foldl concat []

e Does this work? Why/why not?
e Nope, value restriction :(



Practice: flat map

e Type:
o ‘Ya list list -> ‘a 1list
e Behavior:
o Does this look familiar?
O Returns the concatenation of a list of list as one list.



Code: flat map

fun flat map f xs =
case xs of
[] => T[]
| x::xs' => (f x) @ flat map f xs'



Practice: only valid

e Type:
O (int * int) list -> (int * int) 1list
e Behavior:
o Does this look familiar?
o Returns a list of int tuples with the elements of the input list of
int tuples that match a certain criteria.
o Let’s just say the criteria is that both ints add up to 17



Code: only valid

fun 1s valid(x,y) = x + y = 17

val only valid = List.filter is valid



