PAUL G.
ALLEN

SCHOOL

CSE 341
Section 7/

Fall 2018

Adapted from slides by Nicholas Shahan, Dan Grossman, and Tam Dang



Outline

* Interpreting LBl (Language Being Implemented)
* Assume Correct Syntax
* Check for Correct Semantics
e Evaluating the AST

* LBl “Macros”
* Eval, Quote, and Quasiquote

 Variable Number of Arguments

* Apply



Building an LBl Interpreter

* We are skipping the parsing phase «— Do Not Implement

- Can be skipped because AST (“Abstract Syntax Tree”) nodes
represented as Racket structs.

* LBl vs. Metalanguage: call
- MUPL s the LBI. O
Function Constant
- Racket is the “metalanguage”. N I
X + 4
N
V'ar V'ar
X X




A larger language example...

(struct
(struct
(struct
(struct
(struct
(struct
(struct

const (int) #:transparent)

negate (el)#:transparent)

add (el e2) #:transparent)

bool (b)#:transparent)

multiply (el e2)#:transparent)
eqg-num (el e2)#:transparent)
if-then-else (el e2 e3)#:transparent)

Bl - (add (const 1) (const 1))
Metalanguage — Racket structs/operations on structs/the above code.



Correct Syntax Examples

Using these Racket structs...

(struct const (int) #:transparent)
(struct add (el e2) #:transparent)
(struct if-then-else (el e2 e3)#:transparent)

...we can interpret these LBl programs:

(const 34)
(add (const 34) (const 30))
(if-then-else (bool #t) (const 10) (const 20)



Incorrect Syntax Examples

While using these Racket structs...

(struct const (int) #:transparent)
(struct add (el e2) #:transparent)
(struct if-then-else (el e2 e3)#:transparent)

...We can assume we won’t see LBl programs like:

(const “dan then dog”)
(add 5 4)
(if-then-else (bool ‘(1 2)) (const 5) (bool #f£f))

lllegal input ASTs may crash the interpreter - this is OK



Racket vs. LBl

Structs in Racket, when defined to take an argument, can
take any Racket value:

(struct const (int) #:transparent)
(struct add (el e2) #:transparent)
(struct if-then-else (el e2 e3)#:transparent)

But in LBI, we restrict const to take only an integer value,
add to take two LBI expressions, and so on...

(const “dan then dog”)
(add 5 4)
(1f-then-else (bool ‘(1 2)) (const 5) (bool #f£f))

lllegal input ASTs may crash the interpreter - this is OK



Check for Correct Semantics

What if the program is a legal AST, but evaluation of it tries
to use the wrong kind of value?

(struct const (int) #:transparent)
(struct add (el e2) #:transparent)
(struct if-then-else (el e2 e3)#:transparent)

This is invalid LBI syntax that we need to check for...

(add (const 1) (bool #t))
(if-then-else (const 5) (const 5) (bool #f£f))

* You should detect this and give an error message that is not in
terms of the interpreter implementation



Evaluating the AST

*eval-exp should return a LBl value
* LBl values all evaluate to themselves
* Otherwise, we haven’t interpreted far enough

(const 7) ; evaluates to (const 7)
(add (const 3) (const 4)) ; evaluates to (const 7)



Evaluating the AST

o« What's wrong with this implementation of eval?
(other than it being called “eval-exp-wrong”...)



Evaluating the AST

o It doesn’t recursively check for semantic
correctness!
o Let’s see a better version of this...



Macros Review

e Extend language syntax (allow new constructs)
* Written in terms of existing syntax

* Expanded before language is actually interpreted or
compiled



LBl “Macros”

* Interpreting LBl using Racket as the metalanguage
* LBl is made up of Racket structs
* In Racket, these are just data types

* Why not write a Racket function that returns LBI
ASTs?



LBl “Macros”

If our LBI Macro is a Racket function
(define (++ exp) (add (const 1) exp))

Then the LBI code
(++ (++ (const 7)))

Expands to
(add (const 1) (add (const 1) (const 7)))



LBl “Macros”

If our LBl Macro is a Racket function
(define (andalso el e2) (if-then-else el e2 (bool #£f)))

Then the LBI code

(andalso (bool #t) (bool #t))

Expands to
(if-then-else (bool #t) (bool #t) (bool #£f))



quote

* Syntactically, Racket statements can be thought of
as lists of tokens

* (+ 3 4) isa“plussign”, a “3”, and a “4”

* quote-ing a parenthesized expression produces a
list of tokens

16



quote Examples
(+ 3 4) ; 7

"(+ 3 4)
(quote (+ 3 4))
‘(+ 3 4)

"(+ 3 #t)
(quote (+ 3 #t))
T (+ 3 #t)



quasiquote

* Inserts evaluated tokens into a quote
* Convenient for generating dynamic token lists

*Use unquote to escape a quasiquote back to
evaluated Racket code

* A quasiquote and quote are equivalent unless
we use an unquote operation

18



Self Interpretation

* Many languages provide an eval function or
something similar

* Performs interpretation or compilation at runtime
* Needs full language implementation during runtime

* It's useful, but there's usually a better way
* Makes analysis, debugging difficult



eval

* Racket's eval operates on lists of tokens

* Like those generated from quote and
quasiquote
* Treat the input data as a program and evaluate it



Variable Number of Arguments

* Some functions (like +) can take a variable number
of arguments

‘.'I'I--_-- . - -a —__ a2l _ax _x_ N _L . -

(define fn-any
(lambda xs ; any number of args
(print xs)))
(define fn-l-or-more
(lambda (a . xs) ; at least 1 arg
(begin (print a) (print xs))))
(define fn-2-or-more
(lambda (a b . xs) : at least 2 arags



apply

* Applies a list of values as the arguments to a
function in order by position

(define fn-any
(lambda xs ; any number of args
(print xs)))
(apply fn-any (list 1 2 3 4))

(apply + (list 1 2 3 4)) ; 10
(apply max (list 1 2 3 4)) ; 4

L



