
CSE341: Programming Languages

Section 6
What does mutation mean?

When do function bodies run?

Dan Grossman / Eric Mullen
Autumn 2017

Set!

• Unlike ML, Racket really has assignment statements
– But used only-when-really-appropriate!

• For the x in the current environment, subsequent lookups of x
get the result of evaluating expression e
– Any code using this x will be affected
– Like x = e in Java, C, Python, etc.

• Once you have side-effects, sequences are useful:

Autumn 2017 2CSE341: Programming Languages

(set! x e)

(begin e1 e2 … en)

Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:
– Environment for closure determined when function is defined,

but body is evaluated when function is called
– Once an expression produces a value, it is irrelevant how the

value was produced
Autumn 2017 3CSE341: Programming Languages

(define b 3)
(define f (lambda (x) (* 1 (+ x b))))
(define c (+ b 4)) ; 7
(set! b 5)
(define z (f 4)) ; 9
(define w c) ; 7

The truth about cons

cons just makes a pair
– Often called a cons cell
– By convention and standard library, lists are nested pairs that

eventually end with null

Passing an improper list to functions like length is a run-time error

Autumn 2017 4CSE341: Programming Languages

(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi")
(define lst (cons 1 (cons #t (cons "hi" null))))
(define hi (cdr (cdr pr)))
(define hi-again (car (cdr (cdr lst))))
(define hi-another (caddr lst))
(define no (list? pr))
(define yes (pair? pr))
(define of-course (and (list? lst) (pair? lst)))

The truth about cons

So why allow improper lists?
– Pairs are useful
– Without static types, why distinguish (e1,e2) and e1::e2

Style:
– Use proper lists for collections of unknown size
– But feel free to use cons to build a pair

• Though structs (like records) may be better

Built-in primitives:
– list? returns true for proper lists, including the empty list
– pair? returns true for things made by cons

• All improper and proper lists except the empty list

Autumn 2017 5CSE341: Programming Languages

cons cells are immutable

What if you wanted to mutate the contents of a cons cell?
– In Racket you cannot (major change from Scheme)
– This is good

• List-aliasing irrelevant
• Implementation can make list? fast since listness is

determined when cons cell is created

Autumn 2017 6CSE341: Programming Languages

Set! does not change list contents

This does not mutate the contents of a cons cell:

– Like Java’s x = new Cons(42,null), not x.car = 42

Autumn 2017 7CSE341: Programming Languages

(define x (cons 14 null))
(define y x)
(set! x (cons 42 null))
(define fourteen (car y))

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them soon),
Racket provides them too:

– mcons
– mcar
– mcdr
– mpair?
– set-mcar!
– set-mcdr!

Run-time error to use mcar on a cons cell or car on an mcons cell

Autumn 2017 8CSE341: Programming Languages

Delayed evaluation

For each language construct, the semantics specifies when
subexpressions get evaluated. In ML, Racket, Java, C:

– Function arguments are eager (call-by-value)
• Evaluated once before calling the function

– Conditional branches are not eager

It matters: calling factorial-bad never terminates:

Autumn 2017 9CSE341: Programming Languages

(define (my-if-bad x y z)
(if x y z))

(define (factorial-bad n)
(my-if-bad (= n 0)

1
(* n (factorial-bad (- n 1)))))

Thunks delay

We know how to delay evaluation: put expression in a function!
– Thanks to closures, can use all the same variables later

A zero-argument function used to delay evaluation is called a thunk
– As a verb: thunk the expression

This works (but it is silly to wrap if like this):

Autumn 2017 10CSE341: Programming Languages

(define (my-if x y z)
(if x (y) (z)))

(define (fact n)
(my-if (= n 0)

(lambda() 1)
(lambda() (* n (fact (- n 1))))))

The key point

• Evaluate an expression e to get a result:

• A function that when called, evaluates e and returns result
– Zero-argument function for “thunking”

• Evaluate e to some thunk and then call the thunk

• Next: Powerful idioms related to delaying evaluation and/or
avoided repeated or unnecessary computations
– Some idioms also use mutation in encapsulated ways

Autumn 2017 11CSE341: Programming Languages

e

(lambda () e)

(e)

Avoiding expensive computations
Thunks let you skip expensive computations if they are not needed

Great if take the true-branch:

But worse if you end up using the thunk more than once:

In general, might not know many times a result is needed
Autumn 2017 12CSE341: Programming Languages

(define (f th)
(if (…) 0 (… (th) …)))

(define (f th)
(… (if (…) 0 (… (th) …))

(if (…) 0 (… (th) …))
…
(if (…) 0 (… (th) …))))

Best of both worlds

Assuming some expensive computation has no side effects, ideally
we would:

– Not compute it until needed
– Remember the answer so future uses complete immediately

Called lazy evaluation

Languages where most constructs, including function arguments,
work this way are lazy languages

– Haskell

Racket predefines support for promises, but we can make our own
– Thunks and mutable pairs are enough… [Friday]

Autumn 2017 13CSE341: Programming Languages

	CSE341: Programming Languages��Section 6�What does mutation mean?�When do function bodies run?
	Set!
	Example
	The truth about cons
	The truth about cons
	cons cells are immutable
	Set! does not change list contents
	mcons cells are mutable
	Delayed evaluation
	Thunks delay
	The key point
	Avoiding expensive computations
	Best of both worlds

