
CSE 341
Section 7

Eric Mullen
Spring 2017

Adapted from slides by Nicholas Shahan, Dan Grossman, and Tam Dang

Outline

• Interpreting LBI (Language Being Implemented)
• Assume Correct Syntax
• Check for Correct Semantics
• Evaluating the AST

• LBI “Macros”
• Eval, Quote, and Quasiquote
• Variable Number of Arguments
• Apply

2

Building an LBI Interpreter

• We are skipping the parsing phase ← Do Not Implement
• Interpreter written in Racket

- Racket is the “metalanguage”

• LBI code represented as an AST
- AST nodes represented as Racket structs
- Allows us to skip the parsing phase

• Can assume AST has valid syntax
• Can NOT assume AST has valid semantics

3

Correct Syntax Examples

4

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int 34)
(add (int 34) (int 30))
(ifnz (add (int 5) (int 7)) (int 12) (int 1))

…we can interpret these LBI programs:

Using these Racket structs…

Incorrect Syntax Examples

5

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

…we can assume we won’t see LBI programs like:

While using these Racket structs…

Illegal input ASTs may crash the interpreter - this is OK

Racket vs. LBI

6

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Structs in Racket, when defined to take an argument, can
take any Racket value:

But in LBI, we restrict int to take only an integer value, add
to take two LBI expressions, and so on…

Illegal input ASTs may crash the interpreter - this is OK

Racket vs. LBI

7

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Structs in Racket, when defined to take an argument, can
take any Racket value:

So this is valid Racket syntax, but invalid LBI syntax:

Illegal input ASTs may crash the interpreter - this is OK

Evaluating the AST

• eval-exp should return a LBI value
• LBI values all evaluate to themselves
• Otherwise, we haven’t interpreted far enough

8

(int 7) ; evaluates to (int 7)
(add (int 3) (int 4)) ; evaluates to (int 7)

Check for Correct Semantics

What if the program is a legal AST, but evaluation of it tries to
use the wrong kind of value?

• For example, “add an integer and a function”
• You should detect this and give an error message that is not

in terms of the interpreter implementation
• We need to check that the type of a recursive result is what

we expect
• No need to check if any type is acceptable

9

Macros Review

• Extend language syntax (allow new constructs)
• Written in terms of existing syntax
• Expanded before language is actually interpreted or

compiled

10

LBI “Macros”

• Interpreting LBI using Racket as the metalanguage
• LBI is made up of Racket structs
• In Racket, these are just data types
• Why not write a Racket function that returns LBI

ASTs?

11

LBI “Macros”

12

(++ (int 7))

(define (++ exp) (add (int 1) exp))

If our LBI Macro is a Racket function

Expands to

(add (int 1) (int 7))

Then the LBI code

quote

• Syntactically, Racket statements can be thought of
as lists of tokens

• (+ 3 4) is a “plus sign”, a “3”, and a “4”
• quote-ing a parenthesized expression produces a

list of tokens

13

quote Examples

14

(+ 3 4) ; 7
(quote (+ 3 4)) ; '(+ 3 4)
(quote (+ 3 #t)) ; '(+ 3 #t)
(+ 3 #t) ; Error

• You may also see the single quote ‘ character used
as syntactic sugar

quasiquote

• Inserts evaluated tokens into a quote
• Convenient for generating dynamic token lists
• Use unquote to escape a quasiquote back to

evaluated Racket code
• A quasiquote and quote are equivalent unless

we use an unquote operation

15

quasiquote Examples

16

(quasiquote (+ 3 (unquote(+ 2 2)))) ; '(+ 3 4)
(quasiquote

(string-append
"I love CSE"
(number->string

(unquote (+ 3 338)))))
; '(string-append "I love CSE" (number->string 341))

• You may also see the backtick ` character used as
syntactic sugar for quasiquote

• The comma character , is used as syntactic sugar
for unquote

Self Interpretation

• Many languages provide an eval function or
something similar

• Performs interpretation or compilation at runtime
• Needs full language implementation during runtime

• It's useful, but there's usually a better way
• Makes analysis, debugging difficult

17

eval

• Racket's eval operates on lists of tokens
• Like those generated from quote and
quasiquote

• Treat the input data as a program and evaluate it

18

eval examples

19

(define quoted (quote (+ 3 4)))
(eval quoted) ; 7
(define bad-quoted (quote (+ 3 #t)))
(eval bad-quoted) ; Error
(define qquoted (quasiquote (+ 3 (unquote(+ 2 2)))))
(eval qquoted) ; 7
(define big-qquoted

(quasiquote
(string-append

"I love CSE"
(number->string

(unquote (+ 3 338))))))
(eval big-qquoted) ; “I love CSE341”

Variable Number of Arguments

• Some functions (like +) can take a variable number
of arguments

• There is syntax that lets you define your own

21

(define fn-any
(lambda xs ; any number of args

(print xs)))
(define fn-1-or-more

(lambda (a . xs) ; at least 1 arg
(begin (print a) (print xs))))

(define fn-2-or-more
(lambda (a b . xs) ; at least 2 args

(begin (print a) (print a) (print xs))))

apply

• Applies a list of values as the arguments to a
function in order by position

22

(define fn-any
(lambda xs ; any number of args

(print xs)))
(apply fn-any (list 1 2 3 4))

(apply + (list 1 2 3 4)) ; 10
(apply max (list 1 2 3 4)) ; 4

	CSE 341�Section 7
	Outline
	Building an LBI Interpreter
	Correct Syntax Examples
	Incorrect Syntax Examples
	Racket vs. LBI
	Racket vs. LBI
	Evaluating the AST
	Check for Correct Semantics
	Macros Review
	LBI “Macros”
	LBI “Macros”
	quote
	quote Examples
	quasiquote
	quasiquote Examples
	Self Interpretation
	eval
	eval examples
	Variable Number of Arguments
	apply

