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Outline

• Interpreting LBI (Language Being Implemented)
• Assume Correct Syntax
• Check for Correct Semantics
• Evaluating the AST

• LBI “Macros”
• Eval, Quote, and Quasiquote
• Variable Number of Arguments
• Apply
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Building an LBI Interpreter

• We are skipping the parsing phase ← Do Not Implement
• Interpreter written in Racket

- Racket is the “metalanguage”

• LBI code represented as an AST
- AST nodes represented as Racket structs
- Allows us to skip the parsing phase

• Can assume AST has valid syntax
• Can NOT assume AST has valid semantics 
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Correct Syntax Examples
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(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int 34)
(add (int 34) (int 30))
(ifnz (add (int 5) (int 7)) (int 12) (int 1))

…we can interpret these LBI programs:

Using these Racket structs…



Incorrect Syntax Examples
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(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

…we can assume we won’t see LBI programs like:

While using these Racket structs…

Illegal input ASTs may crash the interpreter - this is OK



Racket vs. LBI
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(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Structs in Racket, when defined to take an argument,  can 
take any Racket value:

But in LBI, we restrict int to take only an integer value, add
to take two LBI expressions, and so on… 

Illegal input ASTs may crash the interpreter - this is OK



Racket vs. LBI

7

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Structs in Racket, when defined to take an argument,  can 
take any Racket value:

So this is valid Racket syntax, but invalid LBI syntax: 

Illegal input ASTs may crash the interpreter - this is OK



Evaluating the AST

• eval-exp should return a LBI value
• LBI values all evaluate to themselves
• Otherwise, we haven’t interpreted far enough
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(int 7) ; evaluates to (int 7)
(add (int 3) (int 4)) ; evaluates to (int 7)



Check for Correct Semantics 

What if the program is a legal AST, but evaluation of it tries to 
use the wrong kind of value?

• For example, “add an integer and a function”
• You should detect this and give an error message that is not 

in terms of the interpreter implementation
• We need to check that the type of a recursive result is what 

we expect
• No need to check if any type is acceptable
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Macros Review

• Extend language syntax (allow new constructs)
• Written in terms of existing syntax
• Expanded before language is actually interpreted or 

compiled

10



LBI “Macros”

• Interpreting LBI using Racket as the metalanguage
• LBI is made up of Racket structs
• In Racket, these are just data types
• Why not write a Racket function that returns LBI 

ASTs?
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LBI “Macros”
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(++ (int 7))

(define (++ exp) (add (int 1) exp))

If our LBI Macro is a Racket function

Expands to

(add (int 1) (int 7))

Then the LBI code



quote

• Syntactically, Racket statements can be thought of 
as lists of tokens

• (+ 3 4) is a “plus sign”, a “3”, and a “4”
• quote-ing a parenthesized expression produces a 

list of tokens
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quote Examples
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(+ 3 4) ; 7
(quote (+ 3 4)) ; '(+ 3 4)
(quote (+ 3 #t)) ; '(+ 3 #t)
(+ 3 #t) ; Error

• You may also see the single quote ‘ character used 
as syntactic sugar



quasiquote

• Inserts evaluated tokens into a quote
• Convenient for generating dynamic token lists
• Use unquote to escape a quasiquote back to 

evaluated Racket code
• A quasiquote and quote are equivalent unless 

we use an unquote operation
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quasiquote Examples
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(quasiquote (+ 3 (unquote(+ 2 2)))) ; '(+ 3 4)
(quasiquote

(string-append 
"I love CSE"
(number->string 

(unquote (+ 3 338))))) 
; '(string-append "I love CSE" (number->string 341))

• You may also see the backtick ` character used as 
syntactic sugar for quasiquote 

• The comma character , is used as syntactic sugar 
for unquote



Self Interpretation

• Many languages provide an eval function or 
something similar

• Performs interpretation or compilation at runtime
• Needs full language implementation during runtime

• It's useful, but there's usually a better way
• Makes analysis, debugging difficult
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eval

• Racket's eval operates on lists of tokens
• Like those generated from quote and 
quasiquote

• Treat the input data as a program and evaluate it
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eval examples
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(define quoted (quote (+ 3 4)))
(eval quoted) ; 7
(define bad-quoted (quote (+ 3 #t)))
(eval bad-quoted) ; Error
(define qquoted (quasiquote (+ 3 (unquote(+ 2 2)))))
(eval qquoted) ; 7
(define big-qquoted

(quasiquote
(string-append 

"I love CSE"
(number->string 

(unquote (+ 3 338)))))) 
(eval big-qquoted) ; “I love CSE341”



Variable Number of Arguments

• Some functions (like +) can take a variable number 
of arguments

• There is syntax that lets you define your own
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(define fn-any 
(lambda xs ; any number of args

(print xs)))
(define fn-1-or-more 

(lambda (a . xs)    ; at least 1 arg
(begin (print a) (print xs))))

(define fn-2-or-more 
(lambda (a b . xs) ; at least 2 args

(begin (print a) (print a) (print xs))))



apply

• Applies a list of values as the arguments to a 
function in order by position
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(define fn-any 
(lambda xs ; any number of args

(print xs)))
(apply fn-any (list 1 2 3 4))

(apply + (list 1 2 3 4))   ; 10
(apply max (list 1 2 3 4)) ; 4
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