Name:

CSE 341 : Programming Languages
Midterm, Spring 2015

Please do not turn the page until 12:30.
Rules:

e Closed-book, closed-note, except for one side of one 8.5x11in piece of paper.
e Please stop promptly at 1:20.
e There are 100 points total, distributed unevenly among 5 questions.

e When writing code, style matters, but don't worry too much about indentation.

Advice:

e Read questions carefully. Understand a question before you start writing.

e Write down thoughts and intermediate steps so you can get partial credit.

e The questions are not in order of difficulty. Skip around. Get to all the problems.

e The problems are not all worth the same number of points. Get easier points first.
e If you have questions, ask.

e Don’t worry too much; you’re here to learn. Good luck!



PROBLEM 1. (25 points total) To start off, we’ll implement £1atMap which takes a function
of type ‘a -> ‘b list and an ‘a list and returns a single ‘b 1ist. For example,

flatMap (fn x => [x, x]) [1, 2, 3]
evaluatesto (1, 1, 2, 2, 3, 3] and

flatMap (fn y => [y, y + 11) [1, 2, 3]
evaluatesto [1, 2, 2, 3, 3, 4]

(8 points) Please implement f1atMap below. The implementation does not need to be tail
recursive, and you may use the list append operator G.

(* flatMap : (‘a -> ‘b list) -> ‘a list -> ‘b list *)

fun flatMap £ [] = []
| flatMap £ (x::xs) = £ x @ flatMap f xs



Next, we’ll implement fo1d2 which takes a function from type *a -> ‘b -> ‘¢ -> ‘c,an
‘a list,and a ‘b list, and returns a value of type ‘c. For example,

let
fun helper a b acc =
if a < b
then a + acc
else b + acc
in
fold2 helper [1, 2, 31 [3, 2, 11 O
end

evaluatesto 4 and

let
fun helper a b acc =
a ™~ b ”~ acc
in
fold2 helper [“a”, “b”] [“x”, Y“y”] %
end

evaluates to “axby”. Notice the order in which fold2 processes the lists!

(8 points) Please implement fo1d2 below. For full points, please make your implementation
tail recursive. (You will still get most of the points for non-tail-recursive implementations.)

(* fold2 : (‘a -> ‘b -> ‘c -> ‘c) ->
‘a list -=> ‘b list -> ‘c -> ‘c *)

(* tail recursive, wrong order (7 points) ¥*)
fun fold2 £ [] [] acc = acc
| fold2 £ (x::xs) (y::ys) acc =
fold2 £ xs ys (f x y acc)

(* not tail recursive, right order (7 points) ¥*)
fun fold2 £ [] [] acc = acc
| fold2 £ (x::xs) (y::ys) acc =
f xy (fold2 f xs ys acc)



(* tail recursive, right order (8 points)
fun fold2 f xs ys acc = let
fun loop [] [] acc = acc
| loop (x::xs) (y::ys) acc =
loop £ xs ys (f x y acc)
in
loop (rev xs) (rev ys) acc

end

*)



Finally, we’ll implement inBoth which takes two " a 1ists and returns a list containing all
the elements that appear in both argument lists. For example,

inBoth [1, 2, 31 [2, 4, 8]

evaluatesto [2] and

inBoth [\\aII’ \\b/l, \\CII] [\\XII’ \\y/l, \\ZII]

evaluates to []

To implement inBoth, we’ll use three helper functions: filter, mem, and f1ip:

fun filter £ [] = []
| filter £ (x::xs8) =
if £ x
then x :: filter f xs
else filter f xs

fun mem x [] = false

| mem x (y::ys) = (x = y) orelse mem xX ys

fun flip £f x vy = f y x

(9 points) Please implement inBoth using filter, mem,and f1ip. The solution should
only be one line of code. If you cannot determine how to implement inBoth in our limited
time using filter, mem, and £1ip, you can implement it directly for partial credit.

fun inBoth xs ys = filter (flip mem ys) xs



PROBLEM 2. (15 points total) What are the types of these functions?

fun foo £ [] el e2 = el
| foo f [x] el e2 = e2
| foo f (x::xs) el e2 = f (x, foo f xs el e2)

(3 points) foo: ('a * 'b -> 'b) -> 'a list -> 'b -> 'b -> 'b

fun repeat £ ¢ x =
if ¢ x
then x
else repeat £ ¢ (f x)

(5 points) repeat: ('a -> 'a) -> ('a -> bool) -> 'a -> 'a

fun bar (x::xs) (y::ys) (z::zs) = (x, y, z) :: bar xs ys zs
| bar _ =[]

(5 points)bar: 'a list -> 'b list -> 'c list -> ('a * 'b * '¢c) list

| baz a (x::xs) = map (fn r => a :: x :: r) (baz a xs)

(2 points) baz: 'a -> 'a list -> 'a list list



PROBLEM 3. (25 points total) This question has five parts. We treat each part
independently, as though it were in its own separate namespace: bindings defined in previous
parts are not valid in subsequent parts. For each part, write what ans is bound to.

val x = 3
fun £
val x

(IS
Il
b

Il
)}
o

val ans

(6 points) ansis 3

val x = 3
fun £ x

Il
b

val x = 4

Il
)}
o

val ans

(6 points) ansis 5

val addl = fn (a, b) => (a + 1, b + 1)
val pairify = map (fn x => (x, ~X))

val ans = map addl (pairify [1,2,3,4])

(6 points) ansis [(2,0),(3,~1), (4,~2),(5,~3)]



val sub = fn x => x - 2

fun sub x = 3 - sub x

val sub = fn x => sub x - 4
val ans = sub 5

(7 points) ans is ~ 4

BONUS! (not required)

fun £ [] = []
| £ (x::xs8) = let
val £ =
in £ xs end
val ans = £ [1,2,3,4]

fn x => x :: £ xs

(5 points) ansis [[2,3,4],1[3,4],[4]1,[]]



PROBLEM 4. (15 points total) Tracking references can be subtle. Consider this toy program
which outputs 8 integers:

val

fun

val

fun

fun

fun

val
val
val
val
val

a =ref 0

bump x = x + 1

y = ref bump

foo x vy z = x (ly + z)

printInt i = print (Int.toString i1 ~ " ")

bar x =
let
val = a := (ly (la))
val = printInt (!a)
in
foo (ly) a x
end
= printInt (bar 1)
_ = printInt (bar 1)
=y := foo (ly) a
_ = printInt (bar 1)
= printInt (bar 1)

Hint: It may help to draw pictures of what references point to at different times.

(7 points) What are the first four outputs of this program? Circle the correct option. Some
answers are more correct than others and will receive more partial credit.

3 4 6
2 3 5
2 3 4
2 2 2
2 0 2



(8 points) What are the next four outputs of this program? Circle the correct option. Some
answers are more correct than others and will receive more partial credit.



PROBLEM 5. (20 points total) Here is an example of an ML module signature:

signature STACK = sig
type ‘a t
exception Empty
val empty : ‘a t
val push : a -> Ya t -> ‘a t
val pop : 'at -> 'a * ‘at
end

The type ‘a STACK.t represents a stack of ‘a values.

And here is an example of a module implementing the STACK signature:

structure ListStack <: STACK = struct
type ‘a t = ‘a list

val empty = []
fun push x xs = x :: XS
fun pop [] = raise Empty
| pop (x :: xs) = (X, X8)

end

Note that this implementation satisfies the following two properties:

(A) pop empty raises the Empty exception

(B) pop (push x stack) returns (x, stack)



Now, consider this signature:

signature NONEMPTY = sig
type ‘a t
exception Single

val single : ‘a -> ‘a t

val cons : ‘a -> ‘a t -> ‘a t
val head : ‘a t -> ‘a

val tail : ‘a t -> ‘a t

end
The type ‘a NONEMPTY.t represents a nonempty sequence of ‘a values.

(17 points) Please provide a module implementing the NONEMPTY signature. Please
implement your module directly (i.e. do not call into the Stack module from the example). Your
module implementation should satisfy the following properties:
A. head (single x) returns x
B. head (cons x xs) returns x
C. tail (single x) raises the Single exception
(

D. tail (cons x xs) returns xs

structure NonEmptyList <: NONEMPTY = struct
type ‘a t = ‘a list
exception Single

fun single x = [x]

fun cons x xs = x :: Xs

fun head [] = raise Single (* unreachable case ¥*)
| head (x :: xs) = x

fun tail [] = raise Single (* unreachable case ¥*)
| tail [x] = raise Single
| tail (x :: xs) = xs

end



(3 points) Can code using your module ever call head in a way that triggers an exception?
Why or why not?

head never raises an exception because no function in the implementation of
NonEmptyList ever produces an empty list, and client code cannot generate a
NonEmptyList. t value except using the functions provided by the module.



