Modules
CSE 341 : Programming Languages

For larger programs, one “top-level” sequence of bindings is poor
— Especially because a binding can use all earlier (non-

Lecture 12 shadowed) bindings
ML Modules So ML has structures to define modules

structure MyModule = struct bindings end

Inside a module, can use earlier bindings as usual
— Can have any kind of binding (val, datatype, exception, ...)

Zach Tatlock
Spring 2014

Outside a module, refer to earlier modules’ bindings via
ModuleName .bindingName

— Just like List. foldl and String. toUpper; NOW you can
define your own modules

Example Namespace management
structure MyMathLib = » So far, this is just namespace management
struct — Giving a hierarchy to names to avoid shadowing
fun fact x = — Allows different modules to reuse names, e.g., map
if x=0 — Very important, but not very interesting
then 1

else x * fact(x-1)
val half pi = Math.pi / 2
fun doubler x = x * 2

end



Optional: Open Signatures

* A signature is a type for a module

* Can use open ModuleName to get “direct” access to a — What bindings does it have and what are their types
module’s bindings + Can define a signature and ascribe it to modules — example:
— Never necessary; just a convenience; often bad style signature MATHLIB =
— Often better to create local val-bindings for just the bindings sig
you use a lot, e.9., val map = List.map Al GREE 2 Ak o> AR
+ But doesn’t work for patterns val half pi : real

val doubler : int -> int

* And open can be useful, e.g., for testing code
end

structure MyMathLib :> MATHLIB =
struct

fun fact x = ..

val half pi = Math.pi / 2.0

fun doubler x = x * 2

end

In general Hiding things

» Signatures
signature SIGNAME = Real value of signatures is to to hide bindings and type definitions
sig types-for-bindings end — So far, just documenting and checking the types

— Can include variables, types, datatypes, and exceptions defined
in module Hiding implementation details is the most important strategy for

writing correct, robust, reusable software
» Ascribing a signature to a module
structure MyModule :> SIGNAME = So first remind ourselves that functions already do well for some
struct bindings end forms of hiding...

— Module will not type-check unless it matches the signature,
meaning it has all the bindings at the right types

— Note: SML has other forms of ascription; we will stick with these
[opaque signatures]



Hiding with functions

These three functions are totally equivalent: no client can tell which
we are using (so we can change our choice later):

fun double x = x*2
fun double x = x+x
val y = 2

fun double x = x*y

Defining helper functions locally is also powerful

— Can change/remove functions later and know it affects no
other code

Would be convenient to have “private” top-level functions too
— So two functions could easily share a helper function
— ML does this via signatures that omit bindings...

A larger example [mostly see the code]

Now consider a module that defines an Abstract Data Type (ADT)
— A type of data and operations on it
Our example: rational numbers supporting add and toString

structure Rationall =

struct

datatype rational = Whole of int | Frac of int*int
exception BadFrac

(*internal functions gcd and reduce not on slide¥*)

fun make frac (x,y) = ..
fun add (rl,r2) = ..

fun toString r = ..

end

Example

Outside the module, MyMathLib.doubler is simply unbound
— So cannot be used [directly]
— Fairly powerful, very simple idea

signature MATHLIB =
sig

val fact : int -> int
val half pi : real
end

structure MyMathLib :> MATHLIB =
struct

fun fact x = ..

val half pi = Math.pi / 2.0

fun doubler x = x * 2

end

Library spec and invariants

Properties [externally visible guarantees, up to library writer]
— Disallow denominators of 0
— Return strings in reduced form (“4” not “4/1”, “3/2” not “9/6”)
— No infinite loops or exceptions

Invariants [part of the implementation, not the module’s spec]
— All denominators are greater than 0
— All rational values returned from functions are reduced



More on invariants

Our code maintains the invariants and relies on them

Maintain:

- make_frac disallows 0 denominator, removes negative
denominator, and reduces result

- add assumes invariants on inputs, calls reduce if needed

Rely:
- ged does not work with negative arguments, but no
denominator can be negative

- add uses math properties to avoid calling reduce
- toString assumes its argument is already reduced

The problem

By revealing the datatype definition, we let clients violate our invariants
by directly creating values of type Rationall.rational

— At best a comment saying “must use Rationall.make frac’

signature RATIONAL A =
sig
datatype rational = Whole of int | Frac of int*int

Any of these would lead to exceptions, infinite loops, or wrong results,
which is why the module’s code would never return them

- Rationall.Frac(1l,0)
- Rationall.Frac(3,~2)
- Rationall.Frac(9,6)

A first signature

With what we know so far, this signature makes sense:
- ged and reduce not visible outside the module

signature RATIONAL A =

sig

datatype rational = Whole of int | Frac of int*int
exception BadFrac

val make frac : int * int -> rational

val add : rational * rational -> rational

val toString : rational -> string

end

structure Rationall :> RATIONAL A = ..

So hide more

Key idea: An ADT must hide the concrete type definition so clients
cannot create invariant-violating values of the type directly

Alas, this attempt doesn’t work because the signature now uses a
type rational that is not known to exist:

signature RATIONAL WRONG =

sig

exception BadFrac

val make frac : int * int -> rational

val add : rational * rational -> rational
val toString : rational -> string

end

structure Rationall :> RATIONAL WRONG = ..



Abstract types

So ML has a feature for exactly this situation:

In a signature:
type foo
means the type exists, but clients do not know its definition

signature RATIONAL B =

sig

type rational

exception BadFrac

val make frac : int * int -> rational

val add : rational * rational -> rational
val toString : rational -> string

end

structure Rationall :> RATIONAL B = ..

Two key restrictions

So we have two powerful ways to use signatures for hiding:
1. Deny bindings exist (val-bindings, fun-bindings, constructors)

2. Make types abstract (so clients cannot create values of them or
access their pieces directly)

(Later we will see a signature can also make a binding’s type more
specific than it is within the module, but this is less important)

This works! (And is a Really Big Deal)

signature RATIONAL B =

sig

type rational

exception BadFrac

val make frac : int * int -> rational

val add : rational * rational -> rational
val toString : rational -> string

end

Nothing a client can do to violate invariants and properties:
Only way to make first rational is Rationall.make_frac

After that can use only Rationall.make_frac,
Rationall.add, and Rationall. toString

Hides constructors and patterns — don’t even know whether
ornot Rationall.rational is a datatype

But clients can still pass around fractions in any way

A cute twist

In our example, exposing the Whole constructor is no problem

In SML we can expose it as a function since the datatype binding in
the module does create such a function

— Still hiding the rest of the datatype
— Still does not allow using Whole as a pattern

signature RATIONAL C =

sig

type rational

exception BadFrac

val Whole : int -> rational

val make frac : int * int -> rational

val add : rational * rational -> rational
val toString : rational -> string

end

20



Signature matching

Have so far relied on an informal notion of, “does a module type-
check given a signature?” As usual, there are precise rules...

structure Foo :> BARIs allowed if:

» Every non-abstract type in BAR is provided in Foo, as specified
» Every abstract type in BAR is provided in Foo in some way
— Can be a datatype or a type synonym
» Every val-binding in BAR is provided in Foo, possibly with a
more general and/or less abstract internal type
— Discussed “more general types” earlier in course
— Will see example soon
» Every exception in BAR is provided in Foo

Of course Foo can have more bindings (implicit in above rules)

21

Equivalent implementations

Example (see code file):

« structure Rational2 does not keep rationals in reduced form,

instead reducing them “at last moment” in toString
— Also make ged and reduce local functions

* Not equivalent under RATIONAL A
- Rationall.toString(Rationall.Frac(9,6)) "9/6"
- Rational2.toString(Rational2.Frac(9,6)) = "3/2"

* Equivalent under RATIONAL B or RATIONAL C
— Different invariants, but same properties
— Essential that type rational is abstract

23

Equivalent implementations

A key purpose of abstraction is to allow different implementations
to be equivalent

— No client can tell which you are using
— So can improve/replace/choose implementations later

— Easier to do if you start with more abstract signatures (reveal
only what you must)

Now:
Another structure that can also have signature RATIONAL A,
RATIONAL B, or RATIONAL C

— But only equivalent under RATIONAL B or RATIONAL C
(ignoring overflow)

Next:
A third equivalent structure implemented very differently

22

More interesting example

Given a signature with an abstract type, different structures can:
— Have that signature
— But implement the abstract type differently

Such structures might or might not be equivalent

Example (see code):
- type rational = int * int
— Does not have signature RATIONAL A

— Equivalent to both previous examples under RATIONAL B or
RATIONAL C

24



More interesting example

structure Rational3 =
struct

type rational = int * int
exception BadFrac

fun make frac (x,y) = ..

fun Whole i = (i,1) (* needed for RATIONAL C *)
fun add ((a,b) (c,d)) = (a*d+b*c,b*d)

fun toString r = .. (* reduce at last minute *)
end

25

Can’t mix-and-match module bindings

Modules with the same signatures still define different types

So things like this do not type-check:
— Rationall.toString(Rational2.make frac(9,6))
— Rational3.toString(Rational2.make frac(9,6))

This is a crucial feature for type system and module properties:
— Different modules have different internal invariants!
— In fact, they have different type definitions

» Rationall.rational looks like Rational2.rational

but clients and the type-checker do not know that
* Rational3.rational is int*int not a datatype!

27

Some interesting details

* Internally make frac hastype int * int -> int * int,
but externally int * int -> rational

— Client cannot tell if we return argument unchanged

— Could give type rational -> rational in signature, but
this is awful: makes entire module unusable — why?

e Internally Whole has type 'a -> 'a * int but externally
int -> rational

— This matches because we can specialize 'a to int and then
abstract int * int to rational

- Whole cannot have types 'a -> int * int
or 'a -> rational (must specialize all 'a uses)

— Type-checker figures all this out for us

26



