CSE 341 : Programming Languages

Lecture 2
Functions, Pairs, Lists

Zach Tatlock
Spring 2014

Function definitions

Functions: the most important building block in the whole course
— Like Java methods, have arguments and result
— But noclasses, this, return, efc.

Example function binding:
(* Note: correct only if y>=0 *)
fun pow (x: int, y : int) =
if y=0

then 1
else x * pow(x,y-1)

Note: The body includes a (recursive) function call: pow (x,y-1)

What is an ML program?

A sequence of bindings from names to expressions.

Build powerful progs by composing simple constructs.

Build rich exprs from simple exprs

Build rich types from simple types

Example, extended

fun pow (x :int, y: int) =
if y=0
then 1
else x * pow(x,y-1)

fun cube (x : int) =
pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2)

+ cube(2) + 2

Some gotchas Recursion

Three common “gotchas” « If you're not yet comfortable with recursion, you will be soon ©
. . — Will use for most functions taking or returning lists
» Bad error messages if you mess up function-argument syntax
* The use of * in type syntax is not multiplication + “Makes sense” because calls to same function solve “simpler”
— Example: int * int -> int problems

— In expressions, * is multiplication: x * pow(x,y-1)
* Recursion more powerful than loops
+ Cannot refer to later function bindings — We won't use a single loop in ML

— That's simply ML's rule — Loops often (not always) obscure simple, elegant solutions
— Helper functions must come before their uses

— Need special construct for mutual recursion (later)

How to talk about functions precisely? 3 Step ML Language Construct Recipe

3 Step ML Language Construct Recipe

1. Syntax
— How do we write programs with this construct?

2. Typechecking Rules (Static Semantics)
— When is use of this construct well typed?

3. Evaluation (Dynamic Semantics)
— What happens when | run this construct?

More on type-checking
fun x0 (x1:tl, .. , xn: tn) = e

* Newkind of type: (t1 * .. * tn) -> t
— Result type on right

— The overall type-checking result is to give x0 this type in rest
of program (unlike Java, not for earlier bindings)

— Arguments can be used only in e (unsurprising)

» Because evaluation of a call to x0 will return result of evaluating
e, the return type of x0 is the type of e

* The type-checker “magically” figures out t if such a t exists
— Later lecture: Requires some cleverness due to recursion
— More magic after hw1: Later can omit argument types too

Function bindings: 3 step recipe

1. Syntax: fun x0 (x1:¢tl, .., xn: tn) = e
— (Will generalize in later lecture)

3 Evaluation: A function is a value! (No evaluation yet)
— Adds x0 to environment so /ater expressions can call it
— (Function-call semantics will also allow recursion)

2 Type-checking:
— Adds bindingx0 : (t1 * .. * tn) -> tif:
— Can type-check body e to have type t in the static environment

containing:
* “Enclosing” static environment (earlier bindings)
ex1 : tl1, .., xn : tn (arguments with their types)

ex0 : (tl * .. * tn) -> t (forrecursion)

Function Calls

A new kind of expression: 3 questions

1.8yntax: e0 (el,..,en)
— (Will generalize later)
— Parentheses optional if there is exactly one argument

2. Type-checking:

If:

- e0 hassometype (t1 * .. * tn) -> t
- el hastype t1, ..., en hastype tn
Then:

- e0(el,..,en) hastype t
Example: pow (x,y-1) in previous example has type int

Function-calls continued

el (el,..,en)
3. Evaluation:

A. (Under current dynamic environment,) evaluate e0 to a
function fun x0 (x1: tl, .. , xn: tn) = e

» Since call type-checked, result will be a function

B. (Under current dynamic environment,) evaluate arguments to
valuesvl, .., vn

C. Resultis evaluation of e in an environment extended to map
xltovl, ..., xntovn

* (“An environment” is actually the environment where
the function was defined, and includes %0 for recursion)

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces
Build:

1. Syntax: (e1,e2)

2. Type-checking: If el has type ta and e2 has type tb, then the
pair expression has type ta * tb

— A new kind of type

3. Evaluation: Evaluate el tovl and e2 to v2; resultis (v1,v2)
— A pair of values is a value

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
— Now ways to build up data with multiple parts
— This is essential
— Java examples: classes with fields, arrays

Now:

— Tuples: fixed “number of pieces” that may have different types
Then:

— Lists: any “number of pieces” that all have the same type
Later:

— Other more general ways to create compound data

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces
Access:

1. Syntax: #1 e and #2 e

2. Type-checking: If e hastype ta * tb, then #1 e has type ta
and #2 e has type tb

3. Evaluation: Evaluate e to a pair of values and return first or
second piece
— Example: If eis a variable x, then look up x in environment

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces
Access:

1. Syntax: #1 e and #2 e

and #2 e hast

2. Type-checking:{ WI" thlS Work?! as type ta

3. Evaluation: Evaluate e to a pair of values and return first or
second piece

— Example: If e is a variable x, then look up x in environment

Tuples

Actually, you can have tuples with more than two parts
— A new feature: a generalization of pairs

e (el,e2,..,en)
* ta * tb * .. * tn

e #l e, #2 e, #3 e, ..

Homework 1 uses triples of type int*int*int a lot

Examples

Functions can take and return pairs

fun swap (pr : int*bool) =
(#2 pr, #1 pr)

fun sum _two_pairs (prl : int*int, pr2 : int*int) =
(#1 prl) + (#2 prl) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y: int) =
(x div y, x mod y)

fun sort_pair (pr : int*int) =
if (#1 pr) < (#2 pr)
then pr
else (#2 pr, #1 pr)

Nesting

Pairs and tuples can be nested however you want
— Not a new feature: implied by the syntax and semantics

val x1 = (7, (true,9)) (* int * (bool*int) ¥*)
val x2 = #1 (#2 x1) (* bool *)

val x3 = (#2 x1) (¥ leeil@alme W)

val x4 = ((3,5),((4,8),(0,0)))

(* (int*int) *((int*int) * (int*int)) ¥*)

20

Nesting

Should this be true?

(1, (2, 3)) = ((1, 2), 3)

21

Building Lists

The empty list is a value:
[]

In general, a list of values is a value; elements separated by
commas:

[vl,v2,.. ,vn]

If el evaluates to v and e2 evaluates to alist [v1,..,vn],
then el: :e2 evaluatesto [v,..,vn]

el::e2 (* pronounced “cons” ¥*)

23

Lists

» Despite nested tuples, the type of a variable still “commits” to a
particular “amount” of data

In contrast, a list:
— Can have any number of elements
— But all list elements have the same type

Need ways to build lists and access the pieces...

22

Accessing Lists

Until we learn pattern-matching, we will use three standard-library
functions

* null e evaluates to true if and only if e evaluates to []

* Ife evaluatesto [vl,v2,..,vn] then hd e evaluates to vl
— (raise exception if e evaluatesto [])

* Ife evaluatesto [vl,v2,..,vn] then tl e evaluates to

[v2,..,vn]
— (raise exception if e evaluatesto [])
— Notice result is a list

24

Type-checking list operations

Lots of new types: For any type t, the type t 1list describes lists
where all elements have type t

— Examples: int 1list bool list int list list
(int * int) 1list (int list * int) 1list

* So [] canhavetypet list list for any type
— SML uses type 'a list to indicate this (“tick a” or “alpha”)

+ Forel::e2 totype-check, we need a t such that el has type t

and e2 hastype t list. Thenthe resulttypeis t list

e null : 'a list -> bool
- hd : 'a list -> 'a
e tl : 'a list -> 'a list

25

Recursion again

Functions over lists are usually recursive
— Only way to “get to all the elements”
* What should the answer be for the empty list?
* What should the answer be for a non-empty list?
— Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be
recursive

— You create a list out of smaller lists

27

Example list functions

fun sum list (xs : int list) =
if null xs
then 0
else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
if x=0
then []
else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
if null xs
then ys

else hd (xs) :: append (tl(xs), ys)

Lists of pairs
Processing lists of pairs requires no new features. Examples:

fun sum pair list (xs : (int*int) list) =
if null xs
then 0
else #1 (hd xs) +#2(hd xs) + sum pair list(tl xs)

fun firsts (xs : (int*int) list) =
if null xs
then []

else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) =
if null xs
then []

else #2(hd xs) :: seconds(tl xs)

fun sum pair list2 (xs : (int*int) list) =
(sum_list (firsts xs)) + (sum_list (seconds xs))

26

28

