Section 7

Patrick Larson
CSE341 — Spring 2013



Abstract Syntax Trees

(add 2 2)
(add (const 2) (const 2))

(add (const 2) (bool #t))



Abstract Syntax Trees

(add 2 2)
(add (const 2) (const 2))

(add (const 2) (bool #t))



Abstract Syntax Trees

When evaluating an AST, we are not required to
check for bad syntax

But we ARE required to check for bad semantics



Abstract Syntax Trees

Evaluation can assume a legal syntax tree

If the input is illegal the evaluation may crash
(But this is okay!)

We DO need to check that the return types of
sub-expressions are correct



Abstract Syntax Trees

Interpreter should return expression, but only
expressions that evaluate to themselves.

Otherwise we haven’t interpreted far enough



MUPL “macros”

We are interpreting MUPL with Racket
And MUPL is just Racket data

So why not write a Racket function that returns
a MUPL AST?



Quote

Racket statements can be thought of as lists of
tokens

We can use the built in quote operation to turn
a racket program into a list of tokens

We can use an apostrophe as syntactic sugar.



Quasiquote
Useful for inserting expressions into a quote

Use unquote to escape a quote and evaluate it

Quasiquote and quote are the same unless we have
an unguote expression

Can use the back tick for quasiquote and, for
unguote



Eval

Treat the input data as a program and run it!

This means we need a language implementation
at runtime

(This is useful, but there is typically a better way
to do things)



Eval

(define (make-some-code y) ; just returns a list
(if y
(list 'begin (list 'print "hi") (list '+ 4 2))
(list '+ 5 3)))

(eval (make-some-code #t)) ; prints "hi", result 6



