CSE 341 Section 10

Subtyping, Review, and The Future

Outline

1. Subtyping

e Qverview

2. Review
* Topics
e (Questions?

3. The Future
* Languages
* Courses

Records Overview

f* = field name
e* = expression

t* = type

/ .

Creation

{f0=e0, fl=el, ..., fn=en}

-

p

Access/Update

e.field el.field = e2

-

p

Type Signature

{fl:t1, £2:t2, ..., fn:tn}

Subtyping Overview

P
Subtyping Relation

tl <: t2 = tl1 extends t2 = t1 isasubtypeof t2
N

p
Additional Type Rule

If t1 <: t2 and e hastype t1, then e also has type t2

/Record Subtyping Rules

* Width subtyping: A supertype can have fewer fields

* Permutation subtyping: A supertype can have reordered fields
* Transitivity: If t1 <: t2 andt2 <: t3,thentl <: t3.

* Reflexivity: t <: tforany t (anything is a subtype of itself)

Function Types

-

Function Subtyping Rules

or a more tangible example..

If cat <: Animal and Teacher <: Person,then

Person -> Cat <: Teacher -> Animal.

* Function subtyping is covariant for their return types
< Function subtyping is contravariant for their argument types

If t2 <: t4 andt3 <: t1,thentl -> t2 <: t3 -> t4.

~

-

e covariant: preserves subtype relation of types
e contravariant: reverses the subtype relation of types

Objects (in relation to records)

* Objects are basically the same as records except there is a
distinction between mutable and immutable fields.

* Mutable fields are instance variables
e Immutable fields are methods

 Subtyping of objects happens almost the same way as
records

* e.g.Java/C# disallow contravariant method arguments

 The implicit self parameter in methods is covariant (unlike
explicit arguments which are contravariant)

subclassing vs subtyping

 Java confuses these ideas as a matter of convenience, but you
should keep these ideas separate

 C(Classes: define an object’s behavior

* Types: describes what fields an object has and what messages it
can respond to

e Subclassing: inherits behavior, modifies behavior via extension
and overriding

e Subtyping: is a question of suitability and what we want to flag as
a type error

Pop Quiz

Are these sound or not? (if not, give a counter-example)

* When overriding a method, we can change an argument
type to be a supertype of what it was in the superclass’
method.

Sound (contravariant argument types)
* When overriding a method, we can change an argument

type to be a subtype of what it was in the superclass’
method.

Unsound (covariant argument types)

* When overriding a method, we can change the result type to
be a supertype of what it was in the superclass’ method.
* Unsound (contravariant return types)

Pop Quiz (continued)

Are these sound or not? (if not, give a counter-example)

When overriding a method, we can change the result type to
be a subtype of what it was in the superclass’” method.

* Sound (covariant return types)

A subclass can change the type of a (mutable) field to be a
subtype of what it was in the superclass. (This is changing the
type of a field, not adding a second field.)

 Unsound (depth subtyping on mutable fields)

A subclass can change the type of a (mutable) field to be a
supertype of what it was in the superclass. (This is changing
the type of a field, not adding a second field.)

 Unsound (depth subtyping on mutable fields)

At a Glance

. Benefits of no mutation

. Algebraic datatypes, pattern matching

. Higher-order functions; closures; tail recursion

. Lexical scope

. Currying; syntactic sugar

. Equivalence and side-effects

. Type inference

. Dynamic vs. static typing

. Laziness, streams, and memoization

. Macros

. Dynamic dispatch; double-dispatch

. Multiple inheritance, interfaces, and mixins

. OO0 vs. functional decomposition and extensibility
. Subtyping for records, functions, and objects

. Class-based subtyping

. Parametric polymorphism; bounded polymorphism

Questions?

What are your questions?

Some Exciting Developments...

Rust (a “better” C / C++)

* Type inference, higher-order functions
* Concurrency “baked-in”

* Eliminates null pointer exceptions

* Improved memory management

Scala (a “better” Java?)
* FP + OOP + static typing + JVM

Clojure (modern, concurrency-focused Lisp hosted on the JVM)
* Persistent, immutable data structures
* Concurrency primitives with an STM: atomes, vars, agents; refs

Haskell (lazy, pure ML-like language)
e (Category theory: Monads, Monoids, Functors, . ..
* Type classes, parsec, super-awesome type system, . ..

And many more! Haxe, Groovy, Dart, Go, ecmascripten / asm.js, ...

Future Courses

* (CSE333 —Systems Programming
e (CSE401 — Compilers
e (CSE501 — Implementation of Programming Languages

e (CSE505 — Concepts of Programming Languages

