
CSE341: Programming Languages

Lecture 24

Racket Modules, Abstraction with

Dynamic Types; Racket Contracts

Dan Grossman

Fall 2011

Another modules lecture

• Recall lecture 12: SML modules. Key points:

– Namespace management for larger programs (structures)

– Hiding bindings inside the module (gcd, reduce)

– Using an abstract type to enforce invariants

Fall 2011 2 CSE341: Programming Languages

signature RATIONAL =

sig

type rational

exception BadFrac

val make_frac : int * int -> rational

val add : rational * rational -> rational

val toString : rational -> string

end

structure Rational :> RATIONAL = …

Racket is different

• More flexible namespace management

– Convenient ways to rename during export/import

– (In other languages, could write wrapper modules)

• Dynamic typing still has ways to create abstract types

– Just need to be able to make a new type at run-time

– This is what struct does; Scheme has nothing like it

• By default, each file is a module

– Not necessary but convenient

• State-of-the-art contract system

– Arbitrary dynamic checks of cross-module calls with blame

assignment

Fall 2011 3 CSE341: Programming Languages

But first…

Worth emphasizing that modules are not necessary for creating

abstract types: local scope and closures are enough

Recall our rationals example (but note Racket has built-in rationals):

Interface:

– make-frac rejects 0 denominator

– add adds two rationals

– print-rat prints a rational in reduced form

Can implement this by maintaining these invariants:

– num and den fields kept in reduced form

– den is always positive

Fall 2011 4 CSE341: Programming Languages

Wrong approach [see lec24_non_modules.rkt]

This uses local scope to hide gcd and reduce, but it exposes the rat

constructor, so clients can make bad rationals

– So to be "safe", add and print-rat can re-check invariants

Fall 2011 5 CSE341: Programming Languages

(struct (rat num den)

(define rat-funs

 (letrec

 ([gcd (lambda (x y) …)]

 [reduce (lambda (x y) …)]

 [make-frac (lambda (x y) …)]

 [add (lambda (r1 r2) …)]

 [print-rat (lambda (r) …)])

 (list make-frac add print-rat)))

(define make-frac (car rat-funs))

(define add (cadr rat-funs))

(define print-rat (caddr rat-funs))

Right approach [see lec24_non_modules.rkt]

So we also need to hide the rat constructor!

– Also hide mutators if you create them

– Choose to hide accessors to keep representation opaque

– This code doesn't "export" rat?, but doing so a good idea

Fall 2011 6 CSE341: Programming Languages

(define rat-funs

 (let ()

 (struct (rat num den)

 (define (gcd x y) …)

 (define (reduce x y) …)

 (define (make-frac x y) …)

 (define (add r1 r2) …)

 (define (print-rat r) …)

 (list make-frac add print-rat)))

(define make-frac (car rat-funs))

(define add (cadr rat-funs))

(define print-rat (caddr rat-funs))

The key trick

• By hiding the constructor and accessors, clients cannot make

rationals or access their pieces directly

• Clients can still pass non-rationals to add or print-rat, but

any rational will satisfy the invariants

• Technique requires fundamentally on semantics of struct

– Make a new (dynamic) type of thing

– If struct were sugar for cons cells, then clients could use

cons to make bad rationals

• So… to support abstract datatypes, dynamically typed

languages need ways to make "new types of things"

– Scheme traditionally had no such support

• Again, making rat? public makes perfect sense

Fall 2011 7 CSE341: Programming Languages

Racket modules

• The normal and convenient way puts bindings in a file and

provides only the ones that should be public

– Unlike SML, no separate notion of signature – module

decides what to provide

• Default is private

– (But REPL for "Run" of a file is "inside" that file's module)

– Which is why previous lectures used

 (provide (all-provided-out))

– Can provide some of struct's functions

• See lec24_rationals.rkt

– (provide make-frac add print-rat rat?)

Fall 2011 8 CSE341: Programming Languages

It's the same trick

• Modules take care of hiding bindings

• struct takes care of making a new type

• This doesn't work if rationals are implemented with an existing
type like cons

– Clients could use cons? to figure that out and then make

bad rationals

• Common misconception: Dynamically typed languages can't

support abstract types

– Some may not, but they could

Fall 2011 9 CSE341: Programming Languages

Using modules [see lec24_client.rkt]

• Clients get a module's bindings with the require form

– Many variations, using a file-name string is the simplest

– Can also get only the bindings you want, either by listing
them with the only-in syntax or listing what you don't want

with the except-in syntax

• Convenient for avoiding name conflicts

• See the manual for details

– Can also rename bindings: rename-in and prefix-in

• The provider can also rename when exporting

• Overall: convenient namespace management is a nice thing

Fall 2011 10 CSE341: Programming Languages

(require "rationals.rkt")

Contracts

• A contract is a pre- and post-condition for a function

– Software methodology of "design-by-contract"

– If a function fails, blame either the caller or callee

• Old idea; Racket's modules on the cutting edge

• Can provide functions with a contract

– Any predicate (boolean-returning function) on arguments

and result

– Any cross-module call will have its arguments and result

checked at run-time (could be expensive) to assign blame

• Intra-module calls (e.g., recursion) not checked

• (You're not responsible for the details, just the high-level idea)

Fall 2011 11 CSE341: Programming Languages

Example

lec24_rationals_contracts.rkt provides another

implementation of a rationals library with contracts on each export

It maintains different (weaker) invariants, putting more work on

clients, with contracts checking that work:

• Exports rat constructor, but contract requires integer

arguments and positive denominator from client

– Maintains these invariants

• Exports rat-num, rat-den, and rat?

• Does not keep rationals in reduced form

– add doesn't care and doesn't reduce

– print-rat does care (contract checks it); up to client to

either call reduce-rat or "know" the rational is reduced

Fall 2011 12 CSE341: Programming Languages

Example provide (Note: needs DrRacket 5.2)

• contract-out exports bindings with given contracts

• -> takes predicate functions for each argument/result and

checks them on inter-module calls at run-time

– Can use library functions or our own (e.g., reduced-rat)

• Client must satisfy argument contracts and can assume result

contracts

Fall 2011 13 CSE341: Programming Languages

(provide (contract-out

 (rat (-> integer?

 (lambda(y)(and(integer? y)(> y 0)))

 rat?)

 (rat-num (-> rat? integer?))

 (rat-den (-> rat? integer?))

 (rat? (-> any/c boolean?))

 (add (-> rat? rat? rat?))

 (print-rat (-> reduced-rat void?))

 (reduce-rat (-> rat? reduced-rat))))

Contracts vs. invariants

• If you set up strong abstractions and maintain invariants, then

you need to do less run-time contract checking

– Example: No need for reduced-rat to check that the

rational fields are integers with positive denominator

• This is more efficient: only check dynamically what could fail if

"the other party in the contract" is wrong

– Of course, "redundant" checks are less redundant if your

abstractions are leaky due to poor design / bugs

• Invariants are not an argument against contracts

– The two are for different purposes, as in our example

Fall 2011 14 CSE341: Programming Languages

