CSE 341:
Programming Languages

Spring 2007
Lecture 9 — Closures, Map, Fold, Curry

CSE 341 Spring 2007, Lecture 9

Scope

A key language concept: how are user-defined things resolved?
We have seen that ML has lexically scoped variables

Another (more-antiquated-for-variables, sometimes-useful) approach is
dynamic scope

Example of dynamic scope: Exception handlers (where does raise
transfer control?)

Another example of dynamic scope: shell commands and shell scripts
(environment variables)

The more restrictive “no free variables” makes important idioms
impossible.

CSE 341 Spring 2007, Lecture 9

Why lexical scope?

1. Functions can be reasoned about (defined, type-checked, etc.)
where defined

2. Function meaning not related to choice of variable names

3. “Closing over” local variables creates private data; function definer
knows function users do not depend on it

Example:

fun add_2x x fnz=>2z+x+ X

fun add_2x x = let val y = x + x in fn z => z + y end

CSE 341 Spring 2007, Lecture 9

Key idioms with closures

e (Create similar functions

e Pass functions with private data to iterators (map, fold, ...)
e Combine functions

e Provide an ADT

e As a callback without the “wrong side” specifying the

environment.

e Partially apply functions (“currying”)

CSE 341 Spring 2007, Lecture 9

Create similar functions

val addn = fn n => fn m => n+m
val increment = addn 1
val add_two = addn 2
fun f n =
if n=0
then []
else (addn n)::(f (n-1))

CSE 341 Spring 2007, Lecture 9

Partial application (“currying”)

Recall every function in ML takes exactly one argument.

Previously, we simulated multiple arguments by using one n-tuple

argument.

Another way: take one argument and return a function that takes

another argument and ...

This is called “currying” after its inventor, Haskell Curry
Example:

fun inorder3 x = fn y => fn z =>
z >= y andalso y >= x

((inorder3 4) 5) 6

inorder3 4 5 6

val is_pos = inorder3 0 O

CSE 341 Spring 2007, Lecture 9

A currying shortcut

We've seen curried functions written like this:

fun inorder3 x = fn y => fn z =>

z >= y andalso y >= X
But there's a much more convenient syntax:

fun inorder3 x y z =

z >= y andalso y >= X

CSE 341 Spring 2007, Lecture 9

More currying idioms

Currying is particularly convenient when creating similar functions with

map or fold:

val sum = foldl (op +) O;
val product = foldl (op *) 1; (* note space *)
fun mymap f [] = []
| mymap f (x::xs) = f x :: mymap f xs;
val k = mymap (fn x => x+1) [1,2,3];

If fold weren't curried, that would be:
fun sum x = uncurriedfoldl((op +),0,x)

etc.

CSE 341 Spring 2007, Lecture 9

Currying vs. Pairs

Currying is elegant, but a bit rigid: the function writer chooses which

partial application is most convenient.

Of course, it's easy to write wrapper functions:

fun other_curryl f = fn x => fn y => f y x
fun other_curry2 f x y = f y x
fun curry £f xy = £ (x,y)

fun uncurry f (x,y) = f xy

CSE 341 Spring 2007, Lecture 9

Private data, for map/fold

Previously we saw map. This fold function is even more useful:

fun myfoldl f acc nil = acc
| myfoldl f acc (x::xs) = myfoldl f (f(x,acc)) xs;

Example uses (without using private data):

var funl = myfoldl (fn (x,y) => x+y) O
var fun2 = myfoldl (fn (x,y) => y andalso x >= 0) true

Example use (with private data):

fun fun3 (1st,lo,hi) =
myfoldl (fn (x,y) =>
if lo <= x andalso x <= hi then y+1 else y)
0 1st

CSE 341 Spring 2007, Lecture 9 10

More on fold and private data

Another more general example:
fun f4 g 1st = fold (fn (y,1lst2) => (g y)::1st2) [] 1lst

A fold function over a data structure is much like a visitor pattern in

OOP.

We define fold once and do not restrict the type of the function passed

to fold or the environment in which it is defined.

In general, libraries should not unnecessarily restrict clients.

CSE 341 Spring 2007, Lecture 9 11

Combine functions

fun £f1 (g,h)
fun £2 (g,h)

= fn x => g (h x)

= fn x =>

case g x of NONE => h x | SOME y => vy

CSE 341 Spring 2007, Lecture 9

12

