
CSE 341, Spring 2002

1

CSE 341, Spring 2002 1

CSE 341: Programming Languages

� The Team:
� Alan Borning, instructor
� Ken Yasuhara, teaching assistant
� Harr Chen, teaching assistant

� Non-majors who want to take the class:
� Please talk with one of the staff advisors in the main 

Computer Science & Engineering office!!
� �It�s on the Web�

� www.cs.washington.edu/341
� Add yourself to the class listserv

� Directions are on the class web page

CSE 341, Spring 2002 2

Course topics

� Four languages:
� Miranda (a pure functional programming language)
� Java
� Smalltalk (a pure object-oriented language)
� Scheme (like Lisp � lots-o-parentheses)

� Maybe:
� perl
� CLP(R) (constraint logic programming)

� General programming language concepts

CSE 341, Spring 2002 3

Required work

� Warmup program and moderate-sized in each 
language

� Larger project of your own choosing, in either 
Java or Smalltalk (can be done in groups)

� Midterm, final
� Some written homework

� Homework normally due on a Monday (so that 
we can get it back to you in section on Thurs)

CSE 341, Spring 2002 4

Texts
� These are all recommended, not required:

� Simon Thompson, Miranda: The Craft of Functional 
Programming [low priority to buy]

� Timothy Budd, Understanding Object-Oriented Programming 
with Java [medium priority]

� Mark Guzdial, Squeak: Object Oriented Multimedia Applications
[high priority]

� Hal Abelson and Gerald Sussman, Structure and Interpretation 
of Computer Programs [medium priority]

� The web page also has more thoughts about which 
books to buy, if you only want to buy some of them 

� On 4 hour reserve in the Engineering Library (along with 
other useful references � complete list is on the web)

� Will try to put some in the ACM library in Sieg

CSE 341, Spring 2002 5

Grading Policy

� Grading scale:
� homework (40%)
� project (20%)
� midterm (15%) 
� final (25%)

� Late policy:
� Each student is granted two late days to use at 

his/her discretion during the quarter (see the web 
page for detailed rule)

� No other late days or extensions except under very 
unusual circumstances

CSE 341, Spring 2002 6

Collaboration Policy
� Collaboration policy: �Gilligan�s Island Rule� (see 

the web page)
� OK (and encouraged) to talk with other students in 

the class about assignments
� Don�t take away any written material from the 

discussion
� Do something mindless for 0.5 hours
� Then do your assignment

� Freedom of Information Rule
� Write the names of your collaborators on any 

assignment
� Cases of academic misconduct will be turned 

over to the Cheating Committee



CSE 341, Spring 2002

2

CSE 341, Spring 2002 7

History of Programming Languages

1955 1960 1965

Fortran

Algol 60

Lisp CPLSnobol

CSE 341, Spring 2002 8

History of
Programming Languages

1965 1970 1975

BCPL

Algol 68

B Prolog

C Unix
rewritten
in C

Simula
Scheme

Smalltalk-72

CSE 341, Spring 2002 9

History of
Programming Languages

1975 1980 1985

K&R Published
The C Programming

Language

ANSI X3J11
convened to

standardize C

C with Classes
CPre

C++
Objective

C

Smalltalk-80

Icon

CSE 341, Spring 2002 10

History of
Programming Languages

1985 1990 1995

Stroustrup�s
The C++ Programming
Language

ANSI X3J16
Formed for
C++ Standard

Oak
Project

C++ PL
2nd Ed.

Java

Haskell

Perl

Perl5

CSE 341, Spring 2002 11

What is a programming language 
for?

� Instructing machines?
� Communicating among programmers?
� Expressing high level designs?
� Notation for algorithms?
� Tool for experimentation?

Languages are for both humans
and computers!

CSE 341, Spring 2002 12

Effective Use of Programming 
Languages

�Learning the fundamentals of a 
programming language is one thing: 
learning how to design and write 
effective programs in that language 
is something else entirely.�

�Scott Meyers



CSE 341, Spring 2002

3

CSE 341, Spring 2002 13

Why do we care?

� Whorf-Sapir hypothesis for natural languages
� Tradeoffs among languages

� reusability, maintainability
� performance, robustness
� flexibility, dynamicism
� libraries
� aesthetics (i.e., �fun-ness�)

CSE 341, Spring 2002 14

Language classification

� Imperative (Fortran, Algol, C)
� Object-oriented (Smalltalk, Java, C++)
� Functional (�Pure� Scheme/Lisp, Miranda)
� Logic/Constraint (Prolog, CLP(R))

æ Languages may encourage a certain style even 
if they do not force it on you!

CSE 341, Spring 2002 15

Complexity vs. Expressiveness

Complexity

E
xp

re
ss

iv
en

es
s

C

C++Java

Scheme
Haskell

Miranda

CSE 341, Spring 2002 16

What�s wrong with imperative?
int i = 7;

printf("%d\n",i*2);

� What gets printed?

CSE 341, Spring 2002 17

Assignments make
reasoning difficult!
int i = 7;

i = 3;

printf("%d\n",i*2);

CSE 341, Spring 2002 18

Imperative programming

� Nice for execution, translation� BUT:
� Harder for humans to

understand and reason about
� Harder for sophisticated software tools

� Proving correctness is harder
� Restricts code motion, limits optimizer

(especially important for parallel machines)



CSE 341, Spring 2002

4

CSE 341, Spring 2002 19

Object-Oriented programming

� A kind of imperative programming language
� Metaphor: objects that communicate with each 

other by sending and receiving messages
� Each object is an instance of a class
� Classes come in hierarchies
� Big benefits of OO programming:

� Natural way of decomposing many problems
� Modular
� Good for supporting software reuse (frameworks)

CSE 341, Spring 2002 20

The Functional Approach

� Eliminates assignments (side effects),
focus on expressions

� Tell what to compute, not how
(leave order of computation unspecified)

� Higher level programming model�
leave more details to machine

CSE 341, Spring 2002 21

Miranda (and Haskell)

� Pure functional languages
� Statically-typed
� �Lazy� evaluation

Sample Miranda function definition:

factorial n = product [1..n]

CSE 341, Spring 2002 22

Scheme

� Very simple syntactically
� Still an imperative language, though
� But encourages a functional style
� Can write in a purely functional subset

� we will do this in the beginning
� still has assignment statement

� Dynamically typed

CSE 341, Spring 2002 23

Constraint Logic Programming

� Metaphor: theorem proving and equation solving
� Again, no side effects
� Variables are like those in mathematics

Sample CLP(R) rule:

centigrade_fahrenheit(C,F) :- 1.8*C=F-32.

Use:
?- centigrade_fahrenheit(X,212).


