CSE 332 Winter 2024
Lecture 2: Algorithm Analysis

pt.1

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Terminology

e Abstract Data Type (ADT)

* Mathematical description of a “thing” with set of operations on that “thing”
* Algorithm

* A high level, language-independent description of a step-by-step process

* Data structure

* A specific organization of data and family of algorithms for implementing an
ADT

* Implementation of a data structure
mc implementation in a specific language

ADT: Queue

* What is it?
e A “First In First Out” (FIFO) collection of items

* What Operations do we need?
. Enqaéue
~+ Add a new item to the queue
* Dequeue
\°_Remove the “oldest” item from the queue

* Is_empty

* Indicate whether or not there are items still on the queue

Linked List — giegiData Structure

* Queue rep " ot’items
* A “front” variableT g the oldest item
* A “back” variable referencing the most recent item
e Each item points to the item enqueued after it

* Enqueue Procedure:

* Dequeue Procedure:

* |s_empty Procedure:

Back \.

inked List — Queue Data Structure
e S

Front > 8) 3) 4 gy]

— T

* Queue represented as a “chain” of items

* A “front” variable referencing the oldest item

* A “back” variable referencing the most recent item Back

e Each item points to the item enqueued after it
* Enqueue Procedure: enaueuelxi
last = new Node(x)
back.next = last
back = last

} dequeue(){

first = front.item
front = front.next
return first

* Dequeue Procedure:

)
* |[s_empty Procedure: is—empty(X
- return front.equals(Null)

1

——
(Circulat Array — Queue Dat

a §’rructure

W

b

2

¢

%,

il

Front= }(

O N

1

)

'3

4

6

7

8

/

/ﬁ

. Queue represented as a “chain” of items
variable indicating the oldest item
* A “back” variable indicating the most recent item

. Eaehn : g quened-after

* Enqueue Procedure:

A “front”

* Dequeue Procedure:

* |s_empty Procedure:

9

Bac@(

oy, /O
L,/N

ey

O

Circular Array — Queue Data Structure

Front=0

5| 8| 3| 4] 7
0 1 2 3 4 5 6 7 8 9 | Bgacka

* Queue represented as an array of items
* A “front” index to indicate the oldest item in the queue
* A “back” index to indicate the most recent item in the queue

* Enqueue Procedure:
* Dequeue Procedure:
* Is_empty Procedure:

Circular Array — Queue Data Structure
_J

Front=0
5 8 3 4 7

0 1 2 3 4 5 6 7 8 9 | Backss

* Queue represented as an array of items
* A “front” index to indicate the oldest item in the queue
* A “back” index to indicate the most recent item in the queue

* Enqueue Procedure: enqueue(x)i
gueue[back] = x

back = (back + 1) % queue.length
}
* Dequeue Procedure: deaueue()

first = queue[front]
front = (front + 1) % queue.length

)
* |s_empty Procedure: is_empty(){ </-_

return front == back

}

Linked List vs. Circular Array

Warm up:
have a pile of string
have one end of the string in-hand
need to find the other end in the pile

How can | do this efficiently?

Algorithm ldeas

) S %/L/‘)mﬁ%
) %/lmj@g

L

* |deas:

11

Algorithm Running Times

* How do we express running timey / h>) m

* Units of “time” 5 ¥ , U »7 S
* How to express efficiency?

A W

S2e
O o 1

.

My Abnroach

13

End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

3. Separate the pile of yarn into 2 piles, note which connectsto_
the beginning (call it pile A, the other pile B) s |

Repeat on B
pile with end 5),

4. Count the number of strands crossing the piles

5. Ifthe count is even, pile A contains the end, else pile B does

14

Dr\/‘/\C_ Tpa

Why Do[% Analysis?

* Allows us to compare algorithms, not implementations

* Using Qbserggtions necessarily couples th?algorithm with its implementation

* If my implementation on my computer takes more time than your
implementation on your computer, we cannot conclude your algorithm is
better

* We can predict an algorithm’s running time before implementing
* Understand where the bottlenecks are in our algorithm

g .)

() =
Goals for Algorithm Analysis - / 7

Wajﬂm@v which maps the algorithm’s input size to a measure
of resources used

* |nput of the function/ si i -

 Number of characters in a string, number of items in a list, number of pixels in an image

* Output of the function:/counts of resources used

J
* Number of times the algorithm adds two n ether,/Jnumber times the algorithm
does ?@)r@omparison, maximum number of bytes of memory the algorithm uses at

any ti -

* Important note: Make sure you know the “units” of your domain and
codomain!

2/\/0rst@ Analysis (in general)

* If an algorithm has a worst case resource complexity of

* Among all possible size-n inputs, the “worst” one will use f (n}) “resources’

* l.e. f(n) gives the maximum count of resources needed from amonga
inputs of size n

LVVﬁ[st Case Running Timg Analysis L

* If an algorithm has a worst case running time of@i . Z

 Among all possible size-n inputs, the “worst” one will do f (n) [‘operations”
LT

* l.e. f(n) gives the maximum operation count from among all inputs of size

Worst Case Space Analysis

. | S
* If an algorithm has a worst case space complexity of f (1)
* Among all possible size-n inputs, the “worst” one will need f(n) “memory uni’g”/
* l.e. f(n) gives the maximum memory unit count from among all inputs of size n

@74%95
(>

/\C CSF—

|
myFunctioHist Worst Case Running Time - Example

b=55+5;

c=b/3; Questions to ask: [e AN H
b =c+100; * What are the units of the input size?/ , *{ J
for{i 2\0; i < n.size(); i++) { What are the operations we’re counting?
[QQ e For eachline:
} * How many times will it run?
if (b %62 ==0) { * How long does it take to run?
@ * Does this change with the input size?
}
else {
for = 0; i < n.size(); i++) {
}
}
return c;

Worst Case Running Time — Example 2
beAnnoying(List n){

Questions to ask:
List m = []; e What are the units of the input size?
for (i=0; i < n.size(); i++){ * What are the operations we’re counting?

, * For each line:
m.add(nl[i]); * How many times will it run?
for (j=0; j< n.size(); j++){ * How long does it take to run?

. “uin:) . 17, ™ D : . . . ?
print (“Hi, I’'m annoying”); oes this change with the input size

}

return;

Worst Case Running Time — General Guide

* Add together the time of consecutive statements

* Loops: Sum up the time required through each iteration of the loop
* If each takes the same time, then [time per loop X number of iterations]

* Conditionals: Sum together the time to check the condition and time
of the slowest branch

* Function Calls: Time of the function’s body
* Recursion: Solve a recurrence relation

Class Pair
int value;
Pair next;

	Slide 1: CSE 332 Winter 2024 Lecture 2: Algorithm Analysis pt.1
	Slide 2: Terminology
	Slide 3: ADT: Queue
	Slide 4: Linked List – Queue Data Structure
	Slide 5: Linked List – Queue Data Structure
	Slide 6: Circular Array – Queue Data Structure
	Slide 7: Circular Array – Queue Data Structure
	Slide 8: Circular Array – Queue Data Structure
	Slide 9: Linked List vs. Circular Array
	Slide 10
	Slide 11: Algorithm Ideas
	Slide 12: Algorithm Running Times
	Slide 13: My Approach
	Slide 14: End-of-Yarn Finding
	Slide 15: Why Do resource Analysis?
	Slide 16: Goals for Algorithm Analysis
	Slide 17: Worst Case Analysis (in general)
	Slide 18: Worst Case Running Time Analysis
	Slide 19: Worst Case Space Analysis
	Slide 20: Worst Case Running Time - Example
	Slide 21: Worst Case Running Time – Example 2
	Slide 22: Worst Case Running Time – General Guide
	Slide 23

