CSE 332 Winter 2024
Lecture 2: Algorithm Analysis

pt.1

Nathan Brunelle
http://www.cs.uw.edu/332



http://www.cs.uw.edu/332

Terminology
AN

bstract Data Type (ADT)
* Mathematical description of a “thing” with set of operations on that “thing”

* Algorithm

nguage-independent description of a step-by-step process
}Data structure
7

* A specific organization of data and family of algorithms for implementing an
ADT

*/Implementation of a data structure
7@ * A specific implementation in a specific language




ADT: Queue

* What is it?
e A/“First In First Out” (FIFO) l_;ollection of items

* What Operations do we need?

Enqueue
. new item to the queue

°{Dequeue
 Remove the “oldest” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue




Linked List — Queue Data Structure

Front
\

* Queuere

/LA “front” variable referencing the oldest item

5

| |

8

#

A

3

#

#

chain” A“F—Pferﬁ/(/

* A “back” variable referencing the most recent item
e Each item points to the item enqueued after it

* Enqueue Procedure:

* Dequeue Procedure:

* |s_empty Procedure:

Back




Linked List — Queue Data Structure

* Queue represented as a “chain” of items T

* A “front” variable referencing the oldest item

* A “back” variable referencing the most recent item Back

e Each item points to the item enqueued after it
* Enqueue Procedure: enaueuelxi
last = new Node(x)
back.next = last
back = last

}

d
* Dequeue Procedure: equeue()

Qront = front.nex
return first

)
* |[s_empty Procedure: is—empty(X
- return front.equals(Null)

1



P

@,ula Array — Queu

e Dat

a Structure

X

X

X

X

/|

/172

p

(

Fronzﬁ l

-0/ 1

"2

/3'

4

5

6 7

8

* Queue represented as a “chain” of items

* A “front” variable referencing the oldest item
* A “back” variable referencing the most recent item
e Each item points to the item enqueued after it

* Enqueue Procedure:q(/_[éu//(\'_][//\f - X
A\ /€M/7/*4

* Dequeue Procedure:

* |s_empty Procedure:

9

S~—
Backead

/)(ﬁ/} o
}(\ﬁagl A7



Circular Array — Queue Data Structure

Front=0

5| 8| 3| 4] 7
0 1 2 3 4 5 6 7 8 9 | Bgacka

* Queue represented as an array of items
* A “front” index to indicate the oldest item in the queue
* A “back” index to indicate the most recent item in the queue

* Enqueue Procedure:
* Dequeue Procedure:
* Is_empty Procedure:



Circular Array — Queue Data Structure

Front=0

5 8 3 4 7

0123456789Back;{5\/3~—7

* Queue represented as an array of items
* A “front” index to indicate the oldest item in the queue
< A “back” index to indicate the most recent item in the queue

* Enqueue Procedure; enquevelx{ /7
Lqueue[baclij):x

back = (back + 1) % queue.length
}
* Dequeue Procedure: deaueue()

first = queue[front]
front = (front + 1) % queue.length
}
* |s_empty Procedure: is_empty()

return front == back

}




Linked List vs. Circular Array

 Circular array: you need to pick the size

* If you wanted to do things other than the ADT operations (e.g.
indexing) then CA is better

* LL maybe uses more space because it has the pointers
* CA might be more complex (resizing, modulus, etc)



Warm up:
have a pile of string
have one end of the string in-hand
need to find the other end in the pile

How can | do this efficiently?




Algorithm ldeas

* |deas:

11



Algorithm Running Times % ﬂ

. How Wwe exp#es@ runnlng tlzmle?OLw o g

::Zastzfe;r:eess eff|C|ency? / E= T s (

2 M an CX LA
/'ﬂ/u%.'3.'gf d/(_/%/%
O ppaT L OptTH SV (St



My Apnroach

13



End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

3. Separate the pile of yarn into 2 piles, note which connectsto_
the beginning (call it pile A, the other pile B) s |

Repeat on B
pile with end 5),

4. Count the number of strands crossing the piles

5. Ifthe count is even, pile A contains the end, else pile B does

14



Why Do resource Analysis?

i
* Allows us to algorith s, not(implementation
* Using necessarily couples the algorithmwithits impiemenw

* If my implementation on my computer takes more time than your
implementation on your computer, we cannot conclude your algorithm is
better

* We can predict an algorithm’s running time before implementing

-\L[J_ﬁderstand where the bottlenecks are in our algorithm
_J




Goals for Algorithm @nal\%

* |dentify 3 function \which @f the algorithm’s input size to a measure
‘of resour 2

/’\- Input of the function: sizes of the input
 Number of characters in a string, number of items in a list, number of pixels in an image

, —— o
. Outpume function: gounts of resources used
-/ ¢ Number of times the algorithm adds two numbers together, number times the algorithm

’ . . N/—_\f_/ .
@/’ = L/)/Lg(oes a@r@mparlson, maximum number of bytes of memory the algorithm uses at

ny time

* Important note: Make sure you know the “units” of your domain and
codomain!




—
Worst Case Analysis (injgeral) LM

* If an algorithm has a worst case resource complexity of

v
* Among all possible size-n inputs, the “worst” one will use f(n)/“resources”
S~—__ — —_——

* l.e. f(n) gives the maximum count of resources needed from among all
inputs of size n

(o




Worst Case Running Time Analysis

* If an algorithm has a worst case running time of f(n)

i —

 Among all possible size-n inputs, the “worst” one will do f(n) “operations”
plze

S——

* l.e. f(n) gives the maximum operation count from among all inputs of size n




Worst Case Space Analysis

* If an algorithm has a worst case space complexity of f(n)
 Among all possible sziZﬁ’Ilinputs, the “worst” one will nee ) “memory units”

* l.e. f(n) gives the maximum memory unit count from among all inputs of size n




mwm Worst Case Running Time - Example
b=55+5;

c=b/3; Questions to ask:
b =c+ 100;  What are the units of the input size?
for (i = 0; i < n.size(); i++) {  What are the operations we’re counting?
e For eachline:
} * How many times will it run?
if (b % 2==0){ * How long does it take to run?
* Does this change with the input size?
}
else {
for (i = 0; i < n.size(); i++) {
C++;
}
}
return c;



Worst Case Running Time — Example 2
beAnnoying(List n){

Questions to ask:
List m = []; e What are the units of the input size?
for (i=0; i < n.size(); i++){ * What are the operations we’re counting?

, * For each line:
m.add(nl[i]); * How many times will it run?
for (j=0; j< n.size(); j++){ * How long does it take to run?

. “uin: ) . 17, ™ D : . . . ?
print (“Hi, I’'m annoying”); oes this change with the input size

}

return;



Worst Case Running Time — General Guide

* Add together the time of consecutive statements

* Loops: Sum up the time required through each iteration of the loop
* If each takes the same time, then [time per loop X number of iterations]

* Conditionals: Sum together the time to check the condition and time
of the slowest branch

* Function Calls: Time of the function’s body
* Recursion: Solve a recurrence relation



	Slide 1: CSE 332 Winter 2024 Lecture 2: Algorithm Analysis pt.1
	Slide 2: Terminology
	Slide 3: ADT: Queue
	Slide 4: Linked List – Queue Data Structure
	Slide 5: Linked List – Queue Data Structure
	Slide 6: Circular Array – Queue Data Structure
	Slide 7: Circular Array – Queue Data Structure
	Slide 8: Circular Array – Queue Data Structure
	Slide 9: Linked List vs. Circular Array
	Slide 10
	Slide 11: Algorithm Ideas
	Slide 12: Algorithm Running Times
	Slide 13: My Approach
	Slide 14: End-of-Yarn Finding
	Slide 15: Why Do resource Analysis?
	Slide 16: Goals for Algorithm Analysis
	Slide 17: Worst Case Analysis (in general)
	Slide 18: Worst Case Running Time Analysis
	Slide 19: Worst Case Space Analysis
	Slide 20: Worst Case Running Time - Example
	Slide 21: Worst Case Running Time – Example 2
	Slide 22: Worst Case Running Time – General Guide

